What speed v(t) enables constant power by solenoid pull?

AI Thread Summary
To achieve constant power during solenoid actuation, the dynamic position x(t) must be carefully managed to avoid a crash noise at the end of the stroke. The magnetic force is defined as F(x) = kx(t)^-2, which leads to infinite force if x(t) reaches zero, creating a significant impact. Introducing a minimal air gap 𝛿 allows for a non-zero endpoint, but questions arise about the practicality of maintaining constant power under these conditions. The discussion highlights that to prevent noise, energy must be dissipated through damping or a spring mechanism, which inherently reduces power as the plunger approaches the end. Ultimately, achieving constant power while avoiding sudden stops presents a complex challenge.
cairoliu
Messages
51
Reaction score
3
Assuming the position x = 0 if no air gap, max stroke of plunger is L.
Bordery conditions: x(t=0) = L, x(t=T)= 0.
Given magnetic force F(x) = kx(t)^-2, here k is constant.
If uncontrolled, there is big crash noise afer solenoid actuated, so I wish it pull plunger at constant power.
Help me find the dynamic position x(t), then I can get velocity.
I know Wolfram software may resolve it, but I have no money to buy it.
 
Physics news on Phys.org
cairoliu said:
Bordery conditions: x(t=0) = L, x(t=T)= 0.
Given magnetic force F(x) = kx(t)^-2, here k is constant.
If uncontrolled, there is big crash noise afer solenoid actuated, so I wish it pull plunger at constant power.
If x(t=T)= 0, then F(x(t=T)) = kx(t=T)^-2 = k(0)^-2 = ##\infty##. How do you expect not having a big crash noise at t=T ?
 
jack action said:
If x(t=T)= 0, then F(x(t=T)) = kx(t=T)^-2 = k(0)^-2 = ##\infty##. How do you expect not having a big crash noise at t=T ?
Now that noise not good, I can reserve a minimal air gap 𝛿, then x(t=T)= 𝛿, and still ask for the solution of constant power.
 
How is constant power helping you? If you have power ##P## at the end of the stroke, then if ##F = 0##, ##v## must be infinite, or if ##v = 0##, then ##F## must be infinite. Any way you choose, you will have a lot of energy to disperse rapidly when the plunger suddenly stops.

To avoid the big crash noise, you would normally remove the energy - with a damping force - before it reaches the end. Which means power would gradually go to zero.
 
Or a spring, depending upon duration.
 
This has been discussed many times on PF, and will likely come up again, so the video might come handy. Previous threads: https://www.physicsforums.com/threads/is-a-treadmill-incline-just-a-marketing-gimmick.937725/ https://www.physicsforums.com/threads/work-done-running-on-an-inclined-treadmill.927825/ https://www.physicsforums.com/threads/how-do-we-calculate-the-energy-we-used-to-do-something.1052162/
Back
Top