What theorem is this called? For any gap size n, no more than n gaps

  • Thread starter Thread starter goldust
  • Start date Start date
  • Tags Tags
    Gap Theorem
goldust
Messages
89
Reaction score
1
of size n can consecutively occur in the sequence of primes.
 
Last edited:
Mathematics news on Phys.org
Do you mean size exactly n? You can have gaps between primes that are as large as you want them to be.
 
Oops, I meant "occur in the sequence of prime gaps" not "occur in the sequence of primes", of course :blushing:

e.g. for the gap size 12, no more than 12 gaps of size 12 can consecutively occur in the sequence of prime gaps 1, 2, 2, 4, 2, 4, 2, 4, 6, 2, 6, 4, 2, 4, 6, 6, 2, 6, 4, 2, 6, 4, 6, 8, 4, 2, 4, 2, 4, 14, ...
 
UltrafastPED said:
Are you looking for something like this: http://arxiv.org/pdf/math/0508185v1.pdf

Upon reading over their intro, I would say it's similar, but not quite. I claim that, for any gap size n, at most n gaps of size n can consecutively occur in the sequence of prime gaps. The provided paper is an attempt at proving the Twin Primes Conjecture. I suppose my claim can be very easily proven and doesn't amount to much significance other than possibly getting school kids excited about learning remainders. :-p For instance, it can be easily seen from remainders after dividing by 3 that the primes 3, 5, 7 produce the only instance of 2 gaps of size 2 appearing consecutively in the sequence of prime gaps.

Much thanks for the link. :cool: I recently came across the GPY result while reading about Zhang's work on the Twin Primes Conjecture.
 
Last edited:
Insights auto threads is broken atm, so I'm manually creating these for new Insight articles. In Dirac’s Principles of Quantum Mechanics published in 1930 he introduced a “convenient notation” he referred to as a “delta function” which he treated as a continuum analog to the discrete Kronecker delta. The Kronecker delta is simply the indexed components of the identity operator in matrix algebra Source: https://www.physicsforums.com/insights/what-exactly-is-diracs-delta-function/ by...
Fermat's Last Theorem has long been one of the most famous mathematical problems, and is now one of the most famous theorems. It simply states that the equation $$ a^n+b^n=c^n $$ has no solutions with positive integers if ##n>2.## It was named after Pierre de Fermat (1607-1665). The problem itself stems from the book Arithmetica by Diophantus of Alexandria. It gained popularity because Fermat noted in his copy "Cubum autem in duos cubos, aut quadratoquadratum in duos quadratoquadratos, et...
I'm interested to know whether the equation $$1 = 2 - \frac{1}{2 - \frac{1}{2 - \cdots}}$$ is true or not. It can be shown easily that if the continued fraction converges, it cannot converge to anything else than 1. It seems that if the continued fraction converges, the convergence is very slow. The apparent slowness of the convergence makes it difficult to estimate the presence of true convergence numerically. At the moment I don't know whether this converges or not.

Similar threads

Back
Top