Hypatio
- 147
- 1
Convolution has the form
(f\star g)(t) = \int_{-\infty}^{\infty}f(\tau)g(t-\tau)d\tau
However, I for my own purposes I have invented a similar but different type of "convolution" which has the form
(f\star g)(t) = \int_0^{\infty}f(\tau)g(t/\tau)d\tau
So instead of shifting the function g(t) arithmetically, I shift it multiplicatively with \tau before getting the product and integrating, and I only integrate over the positive domain.
What would be an appropriate name or description of this type of function? Is it discussed somewhere?
(f\star g)(t) = \int_{-\infty}^{\infty}f(\tau)g(t-\tau)d\tau
However, I for my own purposes I have invented a similar but different type of "convolution" which has the form
(f\star g)(t) = \int_0^{\infty}f(\tau)g(t/\tau)d\tau
So instead of shifting the function g(t) arithmetically, I shift it multiplicatively with \tau before getting the product and integrating, and I only integrate over the positive domain.
What would be an appropriate name or description of this type of function? Is it discussed somewhere?