What way could I estimate, easiest and quickest, the area underneath a curve?

AI Thread Summary
To estimate the area under a non-linear force-extension graph for a physics exam, using trapezoids is recommended as it provides greater accuracy than rectangular bars and is relatively easy to calculate. Drawing 3 to 5 trapezoids can effectively approximate the area, especially if the curve is not overly complex. Another effective method is to visually approximate the curve with a straight line, ensuring that the areas above and below the line balance out. This method can be quick and surprisingly accurate, particularly if the curve has varying slopes. Overall, these techniques can help maintain accuracy while saving time during the exam.
slingboi
Messages
8
Reaction score
0
I have a physics exam soon and i would just like to know, which method would be best for me to use to estimate the area under a curve to estimate work done when the force-extension graph is not linear. I know you could draw bars to estimate the area of the curve and you could draw a line so that the area underneath the line equals an estimate of the actual curve, but is there any better way I could use in the exam because drawing bars could take a long time? What do you think would be the best method for me to use to maintain some accuracy?
 
Physics news on Phys.org
What kind of exam is that? I wouldn't think that you can be expected to give an accurate estimate of an area underneath a curve without knowing anything else.

So in the case you really only have a graphical representation of the dependency f(x), the best way would indeed be to use one of the methods you described, but that depends of course on the shape of the curve.
In general deviding the area to integrate into several trapezoids is a good idea. This is more accurate than using rectangular bars and can be as easily calculated. In most cases, drawing 3 to 5 trapezoids should suffice if you don't have to deal with a really funny-shaped curve.
see https://en.wikipedia.org/wiki/Trapezoidal_rule
 
I find that approximating the curve by a straight line (usually sloping) such that, by eye, the area under the straight line is the same as that under the curve, is quick and surprisingly accurate. You judge your straight line so that the area by which it undercuts the curve along part of its length, equals that by which it overestimates in the other part of its length. If the original curve is highly curved you might have to use one straight line for part of it, and another for the other part.
 
Thread 'Gauss' law seems to imply instantaneous electric field'
Imagine a charged sphere at the origin connected through an open switch to a vertical grounded wire. We wish to find an expression for the horizontal component of the electric field at a distance ##\mathbf{r}## from the sphere as it discharges. By using the Lorenz gauge condition: $$\nabla \cdot \mathbf{A} + \frac{1}{c^2}\frac{\partial \phi}{\partial t}=0\tag{1}$$ we find the following retarded solutions to the Maxwell equations If we assume that...
Maxwell’s equations imply the following wave equation for the electric field $$\nabla^2\mathbf{E}-\frac{1}{c^2}\frac{\partial^2\mathbf{E}}{\partial t^2} = \frac{1}{\varepsilon_0}\nabla\rho+\mu_0\frac{\partial\mathbf J}{\partial t}.\tag{1}$$ I wonder if eqn.##(1)## can be split into the following transverse part $$\nabla^2\mathbf{E}_T-\frac{1}{c^2}\frac{\partial^2\mathbf{E}_T}{\partial t^2} = \mu_0\frac{\partial\mathbf{J}_T}{\partial t}\tag{2}$$ and longitudinal part...
Back
Top