A What's the relationship between RMS framework and the Lorentz group?

  • A
  • Thread starter Thread starter pervect
  • Start date Start date
  • Tags Tags
    Lorentz group
pervect
Staff Emeritus
Science Advisor
Homework Helper
Insights Author
Messages
10,400
Reaction score
1,579
TL;DR Summary
What is the relationship between the Robertson-Mansouri-Sexl framework and the Lorentz group
The Robertson-Mansouri-Sexl framework, discussed in "Modern Tests of Lorentz Invariance", https://link.springer.com/article/10.12942/lrr-2005-5?affiliation, is "a well known kinematic test theory for parameterizing deviations from Lorentz invariance."

I'm a bit confused on the relationship between this framework, which tests experimentally for Lorentz invariance, and the group-theoretical theorems discussed in a recent thread that limit the theoretical possiblities for covariant formulations of physics, as discussed in this now-closed PF thread

https://www.physicsforums.com/threa...-postulate-or-assumption.1052965/post-6905619

in particular the (paywalled) paper "V. Berzi and V. Gorini, Reciprocity Principle and the Lorentz
Transformations, Jour. Math. Phys. 10, 1518 (1969)", https://doi.org/10.1063/1.1665000

I assume the RMS framework has some underlying group structure. The question is - is this underlying group structure the same or different than the Lorentz group? I've been perusing the Living Review article, which is rather long. Possibly it already contains the answer I seek, but I haven't been able to figure this out to my satisfaction. Unfortunately, I don't know enough group theory to answer the question myself from first principles :(.

A dumbed down version of the underlying and motivational question might be "If the Lorentz group and the Gallilean group are the only group-theoretical possibilities, what sort of test theory allows us to experimentally test for violations of Lorentz invariance?" The more specific question in the title of the thread is an attempt to answer this "fuzzier" question.
 
In this video I can see a person walking around lines of curvature on a sphere with an arrow strapped to his waist. His task is to keep the arrow pointed in the same direction How does he do this ? Does he use a reference point like the stars? (that only move very slowly) If that is how he keeps the arrow pointing in the same direction, is that equivalent to saying that he orients the arrow wrt the 3d space that the sphere is embedded in? So ,although one refers to intrinsic curvature...
I started reading a National Geographic article related to the Big Bang. It starts these statements: Gazing up at the stars at night, it’s easy to imagine that space goes on forever. But cosmologists know that the universe actually has limits. First, their best models indicate that space and time had a beginning, a subatomic point called a singularity. This point of intense heat and density rapidly ballooned outward. My first reaction was that this is a layman's approximation to...
So, to calculate a proper time of a worldline in SR using an inertial frame is quite easy. But I struggled a bit using a "rotating frame metric" and now I'm not sure whether I'll do it right. Couls someone point me in the right direction? "What have you tried?" Well, trying to help truly absolute layppl with some variation of a "Circular Twin Paradox" not using an inertial frame of reference for whatevere reason. I thought it would be a bit of a challenge so I made a derivation or...
Back
Top