When can we ignore the delta function in th Feynman rules?

Vereinsamt
Messages
27
Reaction score
1
in peskin-schroeder and http://www.hep.phy.cam.ac.uk/batley/particles/handout_04.pdf" the amplitude for e^-e^+\rightarrow \mu^- \mu^+ is written using feynman rules as follows
-iM=[\bar{v}(p_2)(-ie\gamma^\mu )u(p_1)] \frac{-ig_{\mu\nu}}{q^2}[\bar{u}(k_1)(-ie\gamma^\nu )v(k_2)]

but what about the delta function integeration? is it already done here?

thanks in advanced!
 
Last edited by a moderator:
Physics news on Phys.org
I may well be wrong here, but that looks like the M matrix part of the S matrix, and it is the S matrix that has the delta function in it, so you shouldn't be expecting a delta function.

again i DID only just do this, so i may be wrong.
 
Insights auto threads is broken atm, so I'm manually creating these for new Insight articles. Towards the end of the first lecture for the Qiskit Global Summer School 2025, Foundations of Quantum Mechanics, Olivia Lanes (Global Lead, Content and Education IBM) stated... Source: https://www.physicsforums.com/insights/quantum-entanglement-is-a-kinematic-fact-not-a-dynamical-effect/ by @RUTA
If we release an electron around a positively charged sphere, the initial state of electron is a linear combination of Hydrogen-like states. According to quantum mechanics, evolution of time would not change this initial state because the potential is time independent. However, classically we expect the electron to collide with the sphere. So, it seems that the quantum and classics predict different behaviours!
Back
Top