When do formulas for adiabatic processes apply?

AI Thread Summary
The discussion centers on the application of formulas for adiabatic processes, specifically questioning the use of the PV^γ = constant equation. It is noted that equating pdV with the change in internal energy suggests an adiabatic process, but there is uncertainty about whether Q = 0 is a valid assumption. The participants clarify that the PV^γ formula cannot be applied to the entire system due to the presence of two initial pressures. Additionally, it is stated that applying the formula to one partition is incorrect because there is heat flow between the partitions. Understanding the conditions under which adiabatic equations are valid is crucial for accurate thermodynamic analysis.
phantomvommand
Messages
287
Reaction score
39
Homework Statement
Please see the attached photo
Relevant Equations
Change in internal energy = nCvT
Screenshot 2021-03-14 at 4.29.36 PM.png


In this problem, the method used to solve the question is to equate pdV with change in internal energy. This implies an adiabatic process as Q = 0? (not sure about this claim) However, why is it not correct to simply apply the PV^ϒ = constant formula?

Thank you.
 
Physics news on Phys.org
phantomvommand said:
why is it not correct to simply apply the PV^ϒ = constant formula?
What would you apply that to? You cannot apply it to the system as a whole since there are two initial pressures. You cannot apply it to one partition since there is heat flow between them.
 
  • Like
Likes phantomvommand
Thread 'Minimum mass of a block'
Here we know that if block B is going to move up or just be at the verge of moving up ##Mg \sin \theta ## will act downwards and maximum static friction will act downwards ## \mu Mg \cos \theta ## Now what im confused by is how will we know " how quickly" block B reaches its maximum static friction value without any numbers, the suggested solution says that when block A is at its maximum extension, then block B will start to move up but with a certain set of values couldn't block A reach...
TL;DR Summary: Find Electric field due to charges between 2 parallel infinite planes using Gauss law at any point Here's the diagram. We have a uniform p (rho) density of charges between 2 infinite planes in the cartesian coordinates system. I used a cube of thickness a that spans from z=-a/2 to z=a/2 as a Gaussian surface, each side of the cube has area A. I know that the field depends only on z since there is translational invariance in x and y directions because the planes are...
Thread 'Calculation of Tensile Forces in Piston-Type Water-Lifting Devices at Elevated Locations'
Figure 1 Overall Structure Diagram Figure 2: Top view of the piston when it is cylindrical A circular opening is created at a height of 5 meters above the water surface. Inside this opening is a sleeve-type piston with a cross-sectional area of 1 square meter. The piston is pulled to the right at a constant speed. The pulling force is(Figure 2): F = ρshg = 1000 × 1 × 5 × 10 = 50,000 N. Figure 3: Modifying the structure to incorporate a fixed internal piston When I modify the piston...
Back
Top