MHB When do the combined heights of two Ferris wheels reach 27.5m?

  • Thread starter Thread starter Amathproblem22
  • Start date Start date
  • Tags Tags
    Addition Sinusoids
Click For Summary
The discussion focuses on determining the times when the combined heights of two Ferris wheels reach 27.5 meters, modeled by the equations F1 and F2. By equating the sum of the height functions to 27.5, the equation simplifies to a cosine equation involving a triple-angle identity. The solutions involve finding values of theta where cosine equals zero or ±√(1/2). The final expressions for time t are derived from these solutions, indicating the specific moments when the combined heights meet the specified requirement. The mathematical approach effectively combines trigonometric identities and algebraic manipulation to solve the problem.
Amathproblem22
Messages
12
Reaction score
0
So I have figured out two equations model a Ferris wheel ride(two different ferris wheels).
F1 = Ferris wheel one
F2= Ferris wheel two

F1, $$h=-12\cos\frac{\pi}{10}t+12.5$$

F2, $$h=-12\cos\frac{\pi}{30}t+15$$

Now from these two equations, I want to know when F2+F1= 27.5m i.e I want to find the times when the combined height of each Ferris wheels seat adds up to 27.5m.
How would I go about doing this?
 
Mathematics news on Phys.org
If we equate sum of the two height functions to 27.5, we ultimately obtain:

$$\cos\left(\frac{\pi}{10}t\right)+\cos\left(\frac{\pi}{30}t\right)=0$$

Let's let:

$$\theta=\frac{\pi}{30}t$$

And we may write:

$$\cos(3\theta)+\cos(\theta)=0$$

Applying a triple-angle identity for cosine, we ultimately get:

$$2\cos^3(\theta)-\cos(\theta)=0$$

Factor:

$$\cos(\theta)(2\cos^2(\theta)-1)=0$$

Can you proceed?
 
MarkFL said:
If we equate sum of the two height functions to 27.5, we ultimately obtain:

$$\cos\left(\frac{\pi}{10}t\right)+\cos\left(\frac{\pi}{30}t\right)=0$$

Let's let:

$$\theta=\frac{\pi}{30}t$$

And we may write:

$$\cos(3\theta)+\cos(\theta)=0$$

Applying a triple-angle identity for cosine, we ultimately get:

$$2\cos^3(\theta)-\cos(\theta)=0$$

Factor:

$$\cos(\theta)(2\cos^2(\theta)-1)=0$$

Can you proceed?
\[ \cos \left(θ\right)=0\quad \mathrm{or}\quad \:2\cos ^2\left(θ\right)-1=0 \]

\[ \cos \left(θ\right)=0: θ=\frac{\pi }{2}+2\pi n,\:θ=\frac{3\pi }{2}+2\pi n \]

\[ 2\cos ^2\left(θ\right)-1=0: θ=\arccos \left(\sqrt{\frac{1}{2}}\right)+2\pi n,\:θ=2\pi -\arccos \left(\sqrt{\frac{1}{2}}\right)+2\pi n,\:θ=\arccos \left(-\sqrt{\frac{1}{2}}\right)+2\pi n,\:θ=-\arccos \left(-\sqrt{\frac{1}{2}}\right)+2\pi n \] ?
 
Yes, for:

$$\cos(\theta)=0$$

This implies (where \(k\in\mathbb{Z}\)):

$$\theta=\frac{\pi}{2}+\pi k=\frac{\pi}{2}(2k+1)$$

$$t=\frac{30}{\pi}\theta=15(2k+1)$$

And for:

$$\cos(\theta)=\pm\frac{1}{\sqrt{2}}$$

This implies:

$$\theta=\frac{\pi}{4}+\frac{\pi}{2}k=\frac{\pi}{4}(2k+1)$$

$$t=\frac{30}{\pi}\theta=\frac{15}{2}(2k+1)$$
 
Here is a little puzzle from the book 100 Geometric Games by Pierre Berloquin. The side of a small square is one meter long and the side of a larger square one and a half meters long. One vertex of the large square is at the center of the small square. The side of the large square cuts two sides of the small square into one- third parts and two-thirds parts. What is the area where the squares overlap?

Similar threads

  • · Replies 9 ·
Replies
9
Views
13K
  • · Replies 20 ·
Replies
20
Views
3K
Replies
1
Views
6K
Replies
1
Views
4K
  • · Replies 2 ·
Replies
2
Views
4K
  • · Replies 1 ·
Replies
1
Views
3K
  • · Replies 30 ·
2
Replies
30
Views
2K
  • · Replies 5 ·
Replies
5
Views
4K
  • · Replies 5 ·
Replies
5
Views
2K
  • · Replies 1 ·
Replies
1
Views
2K