jostpuur
- 2,112
- 19
Let f:]a,b[\to\mathbb{R} be a differentiable function. For each fixed x\in ]a,b[, we can define a function
<br /> \epsilon_x: D_x\to\mathbb{R},\quad\quad \epsilon_x(u) = \frac{f(x+u) - f(x)}{u} \;-\; f'(x)<br />
where
<br /> D_x = \{u\in\mathbb{R}\backslash\{0\}\;|\; a < x+u < b\}.<br />
Now we have \epsilon_x(u)\to 0 when u\to 0 for all x, but let us then define a following collection of functions for all |u|<b-a.
<br /> \epsilon_u:E_u\to\mathbb{R},\quad\quad \epsilon_u(x) = \epsilon_x(u)<br />
where
<br /> E_u = \{x\in ]a,b[\;|\; a < x + u < b\}.<br />
For all \delta > 0 there exists U>0 so that ]a+\delta, b-\delta[\subset E_u when |u| < U. So now it makes sense to ask, that under which conditions does the collection \epsilon_u|_{]a+\delta, b-\delta[} approach zero uniformly when u\to 0, for all \delta > 0?
For example, could f being continuously differentiable be enough?
<br /> \epsilon_x: D_x\to\mathbb{R},\quad\quad \epsilon_x(u) = \frac{f(x+u) - f(x)}{u} \;-\; f'(x)<br />
where
<br /> D_x = \{u\in\mathbb{R}\backslash\{0\}\;|\; a < x+u < b\}.<br />
Now we have \epsilon_x(u)\to 0 when u\to 0 for all x, but let us then define a following collection of functions for all |u|<b-a.
<br /> \epsilon_u:E_u\to\mathbb{R},\quad\quad \epsilon_u(x) = \epsilon_x(u)<br />
where
<br /> E_u = \{x\in ]a,b[\;|\; a < x + u < b\}.<br />
For all \delta > 0 there exists U>0 so that ]a+\delta, b-\delta[\subset E_u when |u| < U. So now it makes sense to ask, that under which conditions does the collection \epsilon_u|_{]a+\delta, b-\delta[} approach zero uniformly when u\to 0, for all \delta > 0?
For example, could f being continuously differentiable be enough?