Sorry to be slow to respond. I was very busy yesterday.Talk about risks. My article was so wordy that I'm afraid that not everyone read it to the end. Sure there are captital costs, fuel costs, maintenance, operating, marginal, average and more. But there are also multiple sources of revenues to the owners, not just kWh energy.
The energy market described in the article uses primarily marginal costs to determine the optimum, and it compensates the owners for their marginal operating costs.
The ICAP payments, directly compensate owners for their capital costs. To a lesser extent, so do payments for providers of reserves, frequency control, and voltage support. All of those payments are for capabilities, not for generating energy.
I think the debate in this thread about marginal costs was caused by an attempt to assign all types of costs on to one measure, one kWh of energy. That oversimplification ignores those other forms of revenue streams.
Those markets I described were designed by the actual participants. That means the people who buy and sell wholesale power. The designs are constantly tweaked. All those people, each looking out for their self interest assures that no source of value, goes unrewarded. But again, let me stress I speak of wholesale markets, not retail. They are transparent and open for scrutiny, but they seldom attract press attention because it is so difficult to relate what happens there to a consumer's monthly bill. Remember, I mention in the article wholesale prices change every 15 minutes, but rates charged to retail customers are set by law and typically stay constant for a year or more.You're correct, in southern California home rooftop solar has already grown to a very significant portion.
- Net metering, which is wildly popular among homeowners, is not sustainable if the portion of solar gets too large. With net metering, the PV owner is using the grid to provide the functionality of a Tesla Powerwall, but with someone else paying the costs. That's not sustainable at a large scale.
- Retail rate structures can be modified. Imagine a limiting case where every homeowner is self-sufficient for energy production, but they still want a grid connection for backup. There would be zero revenue to the utility for kWh charges. In that case, the obvious solution is to switch to a backup service monthly fee, and forget about kWh charges
- As you point out, there can be contradictions between the grids needs and various government mandates. That is what I mean by destabilizing factors. We can ignore them if the fraction is small, but as it gets larger we get forced to restructure, both technically and economically.
- There is one such restructuring movement underway in several states. That is to create a third layer. So called-agreggators form a buffer between retail consumers and the wholesale markets. The aggregator might offer "a deal" to say 1 million PV home owners, and represent the aggregate resource as a single wealthy and knoledgeable participant in the wholesale markets. I remain skeptical of this idea, but it is an attempt to bridge the transition between central power plant domination, to distributed consumer generation domination. (In the meantime, distribution engineers pull out their hair over protection against faults and short circuits, made complicated by distributed generation. That's a different domain than bulk power engineering.)
- If we take Russ' concerns to the extreme, then we need to revise the wholesale level to use something other than money to determine optimum. I mentioned that in the article, and I also mentioned my fears about such changes because of the risk of creating loopholes that allow cheating and stealing on a huge scale.
When tinkering with such critical things as the electric infrastructure, and hundreds of billions of dollars, the word
prudence ranks extremely high in the minds of designers. But the prudence of central planning is hard to apply to a wild-west environment where every homeowner makes his independent decisions and who also lobbies his congressman.
I should also mention a huge factor the article doesn't address. How specifically are owners of power transmission lines compensated for their investments and services? That is even more abstract and difficult to understand than energy generators/consumers. It can also be big bucks, with up to $3 billion for each major new line. And with renewable advocates calling for 250K new miles of HVDC lines in America, and 500K new km in Europe, the magnitude of the transmission problem could itself become dominant.
In the article, I allude to political problems if the needs of high density cities diverge from everyone else. Distributed generation and high rise apartment buildings don't dance well with each other. In the USA, it is roughly a 50-50 split between people in single-family multi-family dwellings. That same split has a high correlation to red/blue political views which makes it even more volatile.
I love this topic precisely because it requires so many disciplines. Energy conservation, Ohms Law, economics, politics, cybersecurity. To me, it will never be boring.