Rive said:
Creating low prices by subsidies, then
'saving'
That is what I call "tinkering" with the markets. Put in market features that are not fully understood, then adding urgent patches as the negative consequences become clear. Then patching the patches. That in a nutshell, is what made California vulnerable to Enron in the year 2000. When you tinker, you leave loopholes.
Jimster41 said:
I do think that having a debate that centers on ISO's requirements for the operation of the "largest machine in the world" whereby said ISO's come out of the shadows, claim their thrones and say to the utterly dependent public - we need to have a debate with a specific mechanical outcome - i.e. fair pricing of carbon in order to operate this machine reliably - is a nice way of building an important bridge across that gap.
The problem is that the wholesale markets that the ISO runs are so abstract, and so removed from a consumer's monthly bill that the public doesn't understand, and the public is totally uninterested in these issues. Public opinion is more easily driven by inflammatory sound bites, and doomsday predictions.
In fact, unless there is a blackout or an impending crisis, the entire power grid is a crushingly boring subject for most people. I've learned from a lifetime as a power engineer, if I answer the question "what do you do?" at a party, the result is that people instantly walk away or change the subject. (Fortunately for me, I met my life's love before becoming a power engineer. :-)
Jimster41 said:
Another cool project I had the opportunity to work on was a high fidelity simulation of possible evolutions of an entire state's generation portfolio with degrees of freedom including penetration of renewables, storage and demand-response. By high fidelity I mean down to day ahead commit and 5 minute economic dispatch with a linearly and stochastic-ally perturbed demand signal.
Please please, fund me to do that simulation. That has been my wet dream for decades. Not just me, but lots of other engineers. There have been several attempts, but the problem is difficult. You simplify enough to make it practical, then the results are doubtful because of the simplifications. It lies somewhere between first principle physics and economics, and predicting future Dow Jones stock prices.
mfb said:
Germany's new solar installations dropped to essentially zero after the subsidies for new installations reached 120 Euro/MWh. At that level you wouldn't expect the market dynamics to be very important for the decision for or against new installations - you live from the subsidies anyway.
I'm sure that's true, but there is a Moore's Law - like evolution going on here. Solar PV costs halve every 3 years. Wind is also making fast strides. Therefore, what failed 3 years ago, might thrive 3 years from now. Policy based on a 10 year future horizon is a pretty good way to do it.
Traditional power engineering thinks of physical facilities having a 40 year lifetime. That it challenged of course in a rapidly evolving world, but still 10 years per time step is not bad. So looking forward one step, I think of solar prices as ##2^{-3}## times today's price as a planning figure. That is clearly in the no-subsidy-needed range.