- 4,796
- 32
Where is the mistake in these few simple steps ?!
First, I guess that
\lim_{n\rightarrow \infty}\frac{n}{6^n}=0
I'll show it using the definition
\left|\frac{n}{6^n}\right|<\epsilon \Leftrightarrow \frac{n}{6^n}<\epsilon
But, Bernoulli's inequality states that (1+x)^n \geq 1+xn \ \forall x>-1 and \forall n \in \mathbb{N}. So, with x = 5, I get that
6^n \geq 1+5n \Rightarrow \frac{n}{6^n}\leq \frac{n}{1+5n}
And
\frac{n}{1+5n} < \epsilon \Leftrightarrow n<\epsilon + 5\epsilon n \Leftrightarrow n> \frac{\epsilon}{1-5\epsilon}
So basically, for all n greater than that, the inequality should be satisfied. But this is not so evidently.
First, I guess that
\lim_{n\rightarrow \infty}\frac{n}{6^n}=0
I'll show it using the definition
\left|\frac{n}{6^n}\right|<\epsilon \Leftrightarrow \frac{n}{6^n}<\epsilon
But, Bernoulli's inequality states that (1+x)^n \geq 1+xn \ \forall x>-1 and \forall n \in \mathbb{N}. So, with x = 5, I get that
6^n \geq 1+5n \Rightarrow \frac{n}{6^n}\leq \frac{n}{1+5n}
And
\frac{n}{1+5n} < \epsilon \Leftrightarrow n<\epsilon + 5\epsilon n \Leftrightarrow n> \frac{\epsilon}{1-5\epsilon}
So basically, for all n greater than that, the inequality should be satisfied. But this is not so evidently.