Jhenrique
- 676
- 4
Given a implicit ODE like F(x, y(x), y'(x), y''(x)) = 0, why your explicit form is y''(x) = f(x, y(x), y'(x))? Why a ODE is explicited always with y of higher grade?
What they are saying is that starting with an equation F( ... ) = 0 that involves x, y(x), y'(x), and y''(x), where y''(x) is given implicitly, a new equation can be written that gives y''(x) explicitly as a function of x and the lower-order derivatives.Jhenrique said:Given a implicit ODE like F(x, y(x), y'(x), y''(x)) = 0, why your explicit form is y''(x) = f(x, y(x), y'(x))? Why a ODE is explicited always with y of higher grade?
Mark44 said:What they are saying is that starting with an equation F( ... ) = 0 that involves x, y(x), y'(x), and y''(x), where y''(x) is given implicitly, a new equation can be written that gives y''(x) explicitly as a function of x and the lower-order derivatives.
A very simple example would be y'' - 2y' + 2y = 0. Here the left side is F(x, y, y', y'').
With y'' given explicitly, we have y'' = 2y' - 2y. Here the right side is f(x, y, y').