Why are two pieces of wood stronger when bound together?

In summary, the conversation discussed the reasons why using two 2x4s can distribute the load better than using a single 4x4. The two possible reasons given were that real world 2x4s have knots in them, which do not line up when doubled, making the assembly stronger, and that if used as a long column, the thin direction of doubled 2x4s is twice as thick and has eight times the resistance to buckling. The conversation also mentioned that the reality is more complex, but doesn't change the overall conclusions. Additionally, the conversation delved into the effect of grain alignment and failure along grains, as well as the difference in quality control and grading of lumber, which can greatly affect its
  • #1
person123
328
52
TL;DR Summary
The ultimate compressive strength of two 2*4s bound together (say screwed together securely) is greater than one 4*4. Why is this the case?
The answer learned in class is that the two 2*4s are able to distribute the load over both of them, but I don't think this is an actual answer because that's balanced by the fact that each block is half the area. Does anyone know of the reason for this observation? Thanks!
 
  • Like
Likes Alex Ford
Engineering news on Phys.org
  • #2
Two possible reasons:

1) Real world 2 X 4's have knots in them. With doubled 2 X 4's, the knots do not line up, so the assembly is stronger.

2) If it's used as a long column, the maximum load is limited by buckling in the thin direction. The thin direction is twice as thick in doubled 2 X 4's, so has eight times the resistance to buckling.

Caveat: The above is simplified. The reality is much more complex, but does not change the overall conclusions.
 
  • Informative
  • Like
Likes Alex Ford and person123
  • #3
jrmichler said:
Two possible reasons:

1) Real world 2 X 4's have knots in them. With doubled 2 X 4's, the knots do not line up, so the assembly is stronger.

2) If it's used as a long column, the maximum load is limited by buckling in the thin direction. The thin direction is twice as thick in doubled 2 X 4's, so has eight times the resistance to buckling.

Caveat: The above is simplified. The reality is much more complex, but does not change the overall conclusions.

I think the first point makes good sense to me. I think on a similar point, the grains between the two blocks wouldn't be aligned so would failure along grains potentially be blocked along the boundary?

I don't really understand the second point though (assuming that the two 2X4s would buckle as a single beam) because the 4X4 and the two 2X4s would both have the 4in by 4in dimensions.

Another reason given is that there would be variation between the mechanical properties of the two pieces of wood; one 2X4 would have a greater compressive strength for example. However, it seems to me that the ideal scenario, in which it would fail at the highest possible load, the total load would be distributed in proportion to their compressive strengths; if one 2X4 was three times as strong for example, it would take three times the load. This would be just as good as far as I can tell to a compressive strength equal to the average of the two, so the two 2X4s at best would be equally strong on average for this reason, but it could be less strong. I'm not sure if I fully understand the given reason though, so if someone could explain it to me I would greatly appreciate it.
 
Last edited:
  • Like
Likes jrmichler
  • #4
OOPS, I misread the OP. Two 2 X 4's bound tightly will have the same buckling strength as one 4 X 4. And it's good that you are thinking about these things.
 
  • Like
Likes person123
  • #5
person123 said:
I don't really understand the second point though (assuming that the two 2X4s would buckle as a single beam) because the 4X4 and the two 2X4s would both have the 4in by 4in dimensions.
Actually not.
A 2 x 4 is milled 1-1/2 x 3-1/2, so two together on the wide side would produce and area of 3 x 3-1/2
A 4 x 4 milled is 3-1/2 x 3-1/2, a greater area than two 2 x 4's.
Milled lumber is what one gets in a hardware store.

Rough lumber - perhaps you can find that at the sawmill before they trim the lumber.
 
  • Like
Likes phinds
  • #6
person123 said:
I think the first point makes good sense to me. I think on a similar point, the grains between the two blocks wouldn't be aligned so would failure along grains potentially be blocked along the boundary?
I would think so.
The boundary between the two 2 x 4's is a barrier to crack propagation.

Plus, the less large an object is, the less large the biggest defect can be.
A knot, for example, of a certain size for a 4 x 4 , and the lumber will probably hold together from the surrounding material.
A knot of the same size for a 2 x 4, and the lumber may be rejected as unit for sale.
 
  • #7
256bits said:
Actually not.
A 2 x 4 is milled 1-1/2 x 3-1/2, so two together on the wide side would produce and area of 3 x 3-1/2
A 4 x 4 milled is 3-1/2 x 3-1/2, a greater area than two 2 x 4's.
Milled lumber is what one gets in a hardware store.

Rough lumber - perhaps you can find that at the sawmill before they trim the lumber.
Yes, I forgot the 4X4 actually has dimensions of 3.5 in by 3.5 in. For the sake of simplifying the situation, I wanted to assume that the cross sectional area of one is twice as great as the other and adds up to make the equivalent shape, so 2in by 4in vs 4in by 4in for example.

256bits said:
Plus, the less large an object is, the less large the biggest defect can be.
A knot, for example, of a certain size for a 4 x 4 , and the lumber will probably hold together from the surrounding material.
A knot of the same size for a 2 x 4, and the lumber may be rejected as unit for sale.
I didn't think of that! So that difference is due to the quality control of the lumber as well?
 
Last edited:
  • #8
Lumber is graded based on defects (wane, knots, warp, drying defects like case hardening) and moisture content. In the US construction 2x4's are kiln dried to S-DRY (15%-18% MC).

So,yes, bigtime, grading reflects physical quality like strength. Lumber grading is a big predictor of strength - You would want to use Select grade red oak for example to make the rockers for a rocking chair. #3 common grade oak would not take the load.

@phinds knows a lot more about this. And I think has some good links to lumber grading.

The only one I know is a book: Bruce Hoadley 'Understanding Wood' - Amazon or a college library.
 
  • #9
256bits said:
The boundary between the two 2 x 4's is a barrier to crack propagation.
Plus, the less large an object is, the less large the biggest defect can be.
person123 said:
I didn't think of that! So that difference is due to the quality control of the lumber as well?
jim mcnamara said:
So,yes, bigtime, grading reflects physical quality like strength. Lumber grading is a big predictor of strength

All good points and all true. I think the barrier to crack propagation is the biggest factor. Four 1" thick planks glued together make a stronger glulam than two 2" thick planks and that in turn is stronger than a single 4" thick plank.

Another factor is that the glue is always stronger than the wood so even though it is a thin layer it has a big effect, adding to the deterrence of crack propagation.

Large glulams are used for bridges, for example, in ways that equally thick beams from a single tree bole would NEVER be used. Glulams are also used for structural beams in other ways. The statement that glulams are Doug fir (in the image below) is not correct. They MAY be Doug fir or they may be Southern yellow pine, or even a few other woods.

1600887235166.png
 
  • Like
Likes 256bits and person123
  • #10
jim mcnamara said:
@phinds knows a lot more about this. And I think has some good links to lumber grading.
I do have a link somewhere to a university site that has a great article on grading, and a data table as well, but I don't pay much attention to that stuff since I'm interested in wood identification much more than wood use and I can't remember where I put the link (or even which university it is).

I also have a big, fat, expensive, tome "Wood Engineering and Construction" that goes into it all in enormous detail. I bought it back before I realized that I'm just not into that aspect of wood.
 
  • #11
@phinds has introduced something that was not in the OP: glue. The OP states "screwed together securely".

Yeah. 2 2x4s glued together should be stronger than 1 4x4 because of the glue, but not necessarily stronger in the case of the OP's planks screwed together.
 
  • #12
DaveC426913 said:
@phinds has introduced something that was not in the OP: glue. The OP states "screwed together securely".

Yeah. 2 2x4s glued together should be stronger than 1 4x4 because of the glue, but not necessarily stronger in the case of the OP's planks screwed together.
Not quite. The screws are not as effective as the glue for strength but the fact that particular grain flaws are only in half of a piece does make a two 1-unit planks screwed together stronger than a piece of single 2-unit wood.

Still, glue IS what is normally used, thus the term glulam (for glued up lamination)
 
  • #13
person123 said:
Summary:: The ultimate compressive strength of two 2*4s bound together (say screwed together securely) is greater than one 4*4. Why is this the case?

The answer learned in class is that the two 2*4s are able to distribute the load over both of them, but I don't think this is an actual answer because that's balanced by the fact that each block is half the area. Does anyone know of the reason for this observation? Thanks!
With regard to the wood, I suspect it is a molecular answer as well as a philosophical answer: First, a third element is added, the bonding agent (screws, glue, etc.) which is a variable to be measured. Secondly, molecules have structures and no two grains in 2X4's are alike. There resistant (bending, breaking) strengths are different from one another. Just as chain is as strong as weakest link, the 2X4 is strengthened to a degree as presented by the stronger of the two 2x4's that are mated. AF
 
  • #14
Alex Ford said:
Just as chain is as strong as weakest link, the 2X4 is strengthened to a degree as presented by the stronger of the two 2x4's that are mated.
I don't quite understand this point (if anything the chain analogy would indicate two beams of different strengths would be weaker because it would fail at the weaker beam). This was my response to a similar point:

person123 said:
Another reason given is that there would be variation between the mechanical properties of the two pieces of wood; one 2X4 would have a greater compressive strength for example. However, it seems to me that the ideal scenario, in which it would fail at the highest possible load, the total load would be distributed in proportion to their compressive strengths; if one 2X4 was three times as strong for example, it would take three times the load. This would be just as good as far as I can tell to a compressive strength equal to the average of the two, so the two 2X4s at best would be equally strong on average for this reason, but it could be less strong. I'm not sure if I fully understand the given reason though, so if someone could explain it to me I would greatly appreciate it.
 
  • #15
jrmichler said:
Two possible reasons:

1) Real world 2 X 4's have knots in them. With doubled 2 X 4's, the knots do not line up, so the assembly is stronger.

2) If it's used as a long column, the maximum load is limited by buckling in the thin direction. The thin direction is twice as thick in doubled 2 X 4's, so has eight times the resistance to buckling.

Caveat: The above is simplified. The reality is much more complex, but does not change the overall conclusions.
Adding the mention of knots adds to the discussion. This is essentially the same thing as discussing the grain. As you say, some wood types have larger knots, some smaller and some wood (much more expensive have cuts without the knots. Lumberyard employees and owner are well-aware of the strength characteristics of wood and they are priced accordingly. The initial question was for two pieces of wood. No two are exactly alike in strength. The piecing together has been mentioned with the word glulum which is later defined in a comment. Different forms of laminates, including the use of wood in lamination, as well as the use of plywood of different grades, all attempt to answer the needs that are raised by the question. I brought out the bonding aspect of glue in my initial answer and a couple of people then brought that out without reference. One person thoughtfully brought up kiln drying which is one way of speeding up the curing process. Sufficiently dried lumber does not exhibit the characteristic of, "bleeding." When new support posts were installed under my lanai, I observed for several months, bleeding of sap or pitch from various openings or pores. It Kind of bothered me since I both asked for the more expensive support 4X4's in which had already been, "bled." "Wet," lumber will have the tendency to, "bend," under load as it does its job. Variables include the types of bonding agents and the methods of application of those agents. Some of these questions are theoretical, in which the variables are sort of eliminated in use of computer aided analysis of strengths with a sort of constant built in. Those figures are predetermined by prior testing limits for the certain kinds of woods selected. The physics of the answer must include a lot of variables to be valid in its answer, and also in its practical application. Some bonding agents mixed with sawdust, to make various by-product wood products can actually be quite weak.
 

1. How does binding two pieces of wood together make them stronger?

When two pieces of wood are bound together, they become a composite structure. This means that the individual strengths of each piece of wood are combined, resulting in a stronger overall structure. The binding material also helps distribute the weight and pressure more evenly, making the structure more resistant to breaking or bending.

2. What type of binding material is most effective for strengthening wood?

The most effective binding material for strengthening wood depends on the specific application. In general, adhesives such as wood glue or epoxy are commonly used for binding wood together. However, metal fasteners such as screws, nails, and bolts can also be effective, especially for load-bearing structures.

3. Why is it important to have strong wood structures?

Strong wood structures are important for a variety of reasons. They can provide stability and support for buildings, bridges, and other structures. In addition, strong wood structures are essential for safety, as they are less likely to collapse or fail under pressure. Strong wood structures also have a longer lifespan and require less maintenance compared to weaker structures.

4. Are there any disadvantages to binding wood together?

While binding wood together can make it stronger, it also has some potential disadvantages. For example, the binding material may deteriorate over time, reducing the strength of the structure. In addition, the binding process can be time-consuming and may require specialized tools or techniques. It is important to carefully consider the pros and cons before deciding to bind two pieces of wood together.

5. Can two pieces of wood be bound together if they have different grain patterns?

Yes, two pieces of wood with different grain patterns can be bound together. However, it is important to consider the direction of the grain when binding them. For example, if one piece of wood has a horizontal grain and the other has a vertical grain, binding them together may not provide as much strength as if both pieces had the same grain direction. It is generally recommended to bind two pieces of wood with similar grain patterns for optimal strength.

Similar threads

  • DIY Projects
2
Replies
36
Views
8K
  • Astronomy and Astrophysics
Replies
30
Views
4K
Replies
35
Views
9K
Replies
6
Views
1K
  • STEM Career Guidance
Replies
4
Views
1K
  • STEM Academic Advising
2
Replies
54
Views
4K
Replies
16
Views
2K
  • Beyond the Standard Models
Replies
2
Views
2K
  • STEM Career Guidance
Replies
2
Views
2K
Back
Top