Why can we choose wavefunctions to be real?

  • Thread starter Thread starter AndrewShen
  • Start date Start date
  • Tags Tags
    Wavefunctions
AndrewShen
Messages
8
Reaction score
0
There are many cases, for simplicity, we choose the wavefunctions to be real. For example, in http://en.wikipedia.org/wiki/Born–Oppenheimer_approximation, there is "The electronic wave functions \chi_k\, will be taken to be real, which is possible when there are no magnetic or spin interactions. "

I do not know why this can always be done. In fact, I think even the electron eigenstates of hydrogen cannot taken to be real. I know if the Hamiltonian has time-reversal symmetry, and the energy eigenstate is nondegenerate, then the wavefunction can taken to be real. But in most cases there is degeneracy. Therefore this assumption seems to be starnge and not reasonable?
 
Physics news on Phys.org
Well, in the example you show, it is used for an approximation. So it only needs to give approximate results, and the method is valid as long as the approximation holds. Welcome to real physics.

You can attempt the calculation without the approximation if you like...
 
AndrewShen said:
I do not know why this can always be done. In fact, I think even the electron eigenstates of hydrogen cannot taken to be real. I know if the Hamiltonian has time-reversal symmetry, and the energy eigenstate is nondegenerate, then the wavefunction can taken to be real. But in most cases there is degeneracy. Therefore this assumption seems to be starnge and not reasonable?

I think you misunderstood here something. When the eigenstates of the Hamiltonian are degenerate, you can also chose real eigenfunctions. E.g. in the case of hydrogen, you may combine the degenerate (and complex) wavefunctions which are eigenstates of m into real eigenstates ##\psi_{lm}+\psi_{l-m}## and ##i(\psi_{lm}-\psi_{l-m})##. For l=1, this are the orbitals ##p_x## and ##p_y##, respectively.
 
Not an expert in QM. AFAIK, Schrödinger's equation is quite different from the classical wave equation. The former is an equation for the dynamics of the state of a (quantum?) system, the latter is an equation for the dynamics of a (classical) degree of freedom. As a matter of fact, Schrödinger's equation is first order in time derivatives, while the classical wave equation is second order. But, AFAIK, Schrödinger's equation is a wave equation; only its interpretation makes it non-classical...
Insights auto threads is broken atm, so I'm manually creating these for new Insight articles. Towards the end of the first lecture for the Qiskit Global Summer School 2025, Foundations of Quantum Mechanics, Olivia Lanes (Global Lead, Content and Education IBM) stated... Source: https://www.physicsforums.com/insights/quantum-entanglement-is-a-kinematic-fact-not-a-dynamical-effect/ by @RUTA
Is it possible, and fruitful, to use certain conceptual and technical tools from effective field theory (coarse-graining/integrating-out, power-counting, matching, RG) to think about the relationship between the fundamental (quantum) and the emergent (classical), both to account for the quasi-autonomy of the classical level and to quantify residual quantum corrections? By “emergent,” I mean the following: after integrating out fast/irrelevant quantum degrees of freedom (high-energy modes...
Back
Top