Why can't optical phonons travel far?

joelio36
Messages
22
Reaction score
1
I can't figure this out/find the answer. Why are acoustic phonons very low loss (i.e. earthquake P and S waves), but optical phonons die out rapidly?

Thanks,
Joel
 
Physics news on Phys.org
What mechanisms have you considered?
In what sense are phonons "low loss"? What does that mean exactly?
 
The energy loss is low is because of the low frequency/longer wavelength phonon - which does not coincide with the size of the molecules/atoms. The higher frequencies/shorter wavelength phonon is likely to coincide with the size of the molecules/atoms, and thus losing its energy through resonating the energy through all the molecules/atoms. This is the cause of energy attenuation.

Another factor is energy dissipation: By having the size of molecules/atoms coinciding close to that of the phonon, the phonon streams is more likely to be reflected/refracted and thus dissipated.

Both of these factors can help to explain why longer wavelength can travel far, low signal loss.

Another possible explanation is the phonon density: higher frequencies phonon matches with that of smaller atoms/molecular structures, which occurred at a higher density/number, and thus is able to spread the energy faster. Lower frequencies/longer wavelength need larger molecular structures (or multiple atom forming a macro-structures), which occur at a much lower densities, and thus is less able to spread the energy faster.

Another possible dissipative phenomena is electron-phonon coupling, which is more likely to happen for higher frequencies phonons.

These are my layman's perspective of what's happening, but from a specialist point of view (beyond me), u can refer to:

http://www.iop.vast.ac.vn/theor/conferences/nctp/proc/35/153.pdf (on resonance)

http://ocw.mit.edu/courses/chemistr...y-ii-spring-2008/lecture-notes/23_562ln08.pdf (which correlate the wavelength of the phonon with the size of the molecule/atom)

and

http://www-ee.eng.buffalo.edu/faculty/mitin/Papers/115.pdf (on electron-phonon coupling)

http://www.iue.tuwien.ac.at/phd/smirnov/node53.html

http://www.uni-tuebingen.de/meso/ssscript/phononen.pdf

http://ndl.ee.ucr.edu/Paris-Lecture-05.pdf
 
Last edited by a moderator:
From the BCS theory of superconductivity is well known that the superfluid density smoothly decreases with increasing temperature. Annihilated superfluid carriers become normal and lose their momenta on lattice atoms. So if we induce a persistent supercurrent in a ring below Tc and after that slowly increase the temperature, we must observe a decrease in the actual supercurrent, because the density of electron pairs and total supercurrent momentum decrease. However, this supercurrent...
Hi. I have got question as in title. How can idea of instantaneous dipole moment for atoms like, for example hydrogen be consistent with idea of orbitals? At my level of knowledge London dispersion forces are derived taking into account Bohr model of atom. But we know today that this model is not correct. If it would be correct I understand that at each time electron is at some point at radius at some angle and there is dipole moment at this time from nucleus to electron at orbit. But how...
Back
Top