snuz2001 said:
Thanks for the answer, but I do not believe you answered what I asked.
The question was: "what will the pictures from both cameras, the one in the car, and the one on the road will show?"
An answer could be: At clock 1, the picture from the camera above the clock will show 090001 at the road's clock, and 09000086 at car's clock. and at clock 1, the picture from the car will show 0900001 at the car's clock and 09000086 at the road's clock.
try to answer it, and see if you do not run into a problem.
Your question has been answered but maybe you should have also asked how that answer adheres to time dilation (and length contraction). Although this was pointed out, it didn't "click" with you so let me try to explain it in more detail.
First off, you defined a hundred clocks/cameras along the road and one clock/camera on the car. As was pointed out, in the frame of the road, it takes one second for the car to traverse the distance from one clock to the next, so the camera on the car will show 100 pictures of different clocks with one-second difference between them.
But there is only one clock on the car and since it is time dilated, according to the rest frame of the road, it will be running slow by a factor of 0.866 which is the time difference shown on each of the one hundread cameras along the road. These cameras are showing the times on the one clock on the car and have only one picture each in them.
Now you are probably thinking that this is only a one-way time dilation and "where's the symmetry", correct?
Well, as was pointed out, from the rest frame of the car, the clocks along the road are time-dilated by a factor of 1.155, meaning that it takes 1.155 seconds according to the car for them to tick each second. But they are closer together by a factor of 0.866. These two factors cancel out so that when the car passes each clock, they read one second apart and, of course, the time on the car's clock has only progressed 0.866 seconds because they are closer together by that factor.
So from the car's FOR, it takes one hundred pictures of the road clocks that are one second apart and its own clock has advanced by 0.866 seconds between each of these shapshots and this is the time interval that shows up on each of the one hundred road cameras.
Can you see now how each observer sees the other one as experiencing time dilation?
By the way, the reason why your scenario may not seem symmetrical is because you are comparing the times taken by one camera of a hundred clocks with the times taken by a hundred cameras of a single clock. Usually, when showing the symmetry of time dilation, there is just one camera/clock for each observer and they take pictures of each others' clocks at one-second intervals according to their own clock. Because of the finite light propagation time, both cameras would end of with a series of pictures that had the same times on them (separated by 1.732 seconds when moving away from each other or 0.577 seconds when moving towards each other). This is called the Relativistic Doppler Effect.