EdMel
- 13
- 0
Hi guys,
I am having trouble showing that \mathbb{E}\left[(Y-\mathbb{E}[Y|X])^{2}\right]=0.
I understand the proof of why E[Y|X] minimizes the mean square error, but I cannot understand why it is then equal to zero.
I tried multiplying out the square to get \mathbb{E}\left[Y^{2}\right]-2\mathbb{E}\left[Y\mathbb{E}[Y|X]\right]+\mathbb{E}\left[\mathbb{E}[Y|X]\mathbb{E}[Y|X]\right]
but have not been able to justify \mathbb{E}\left[Y\mathbb{E}[Y|X]\right]=\mathbb{E}\left[Y^{2}\right]<br /> or \mathbb{E}\left[\mathbb{E}[Y|X]\mathbb{E}[Y|X]\right]=\mathbb{E}\left[Y^{2}\right].
Thanks in advance.
I am having trouble showing that \mathbb{E}\left[(Y-\mathbb{E}[Y|X])^{2}\right]=0.
I understand the proof of why E[Y|X] minimizes the mean square error, but I cannot understand why it is then equal to zero.
I tried multiplying out the square to get \mathbb{E}\left[Y^{2}\right]-2\mathbb{E}\left[Y\mathbb{E}[Y|X]\right]+\mathbb{E}\left[\mathbb{E}[Y|X]\mathbb{E}[Y|X]\right]
but have not been able to justify \mathbb{E}\left[Y\mathbb{E}[Y|X]\right]=\mathbb{E}\left[Y^{2}\right]<br /> or \mathbb{E}\left[\mathbb{E}[Y|X]\mathbb{E}[Y|X]\right]=\mathbb{E}\left[Y^{2}\right].
Thanks in advance.