mpx86
- 10
- 0
why does it work only when h tends to zero?
\hat{}\[\begin{array}{l}<br /> f(x + h) = xf(x)\\<br /> Ef(x) = xf(x)\\<br /> E = x\\<br /> \ln E = hD\\<br /> \ln x = hD\\<br /> f(x) = y\\<br /> y\ln x = hDy\\<br /> y\ln x = h\frac{{dy}}{{dx}}\\<br /> \int {} \ln xdx = h\int {} dy/y\\<br /> x\log x/e = h\ln y + \ln c\\<br /> x\log x/e = h\ln y/C\\<br /> (x/h)\ln x/e = \ln y/C\\<br /> C(x/e)\frac{{x/h}}{1} = y = f(x)\\<br /> f(x + h) = C((x + h)/e)\frac{{(x + h)/h}}{1}\\<br /> f(x + h)/f(x) = (((x + h)/e)\frac{{(x + h)/h}}{1})/(x/e)\frac{{x/h}}{1}\\<br /> f(x + h)/f(x) = ((x + h)/x)\frac{{x/h}}{1})*((x + h)/e)\\<br /> f(x + h)/f(x) = (1 + h/x)\frac{{x/h}}{1}*((x + h)/e)\\<br /> \mathop {\lim }\limits_{h \to 0} f(x + h)/f(x) = \mathop {\lim }\limits_{h \to 0} e*((x + h)/e)\\<br /> \mathop {\lim }\limits_{h \to 0} f(x + h)/f(x) = \mathop {\lim }\limits_{h \to 0} (x + h)\\<br /> \mathop {\lim }\limits_{h \to 0} f(x + h)/f(x) = x\\<br /> \\<br /> <br /> \end{array}\]
\hat{}\[\begin{array}{l}<br /> f(x + h) = xf(x)\\<br /> Ef(x) = xf(x)\\<br /> E = x\\<br /> \ln E = hD\\<br /> \ln x = hD\\<br /> f(x) = y\\<br /> y\ln x = hDy\\<br /> y\ln x = h\frac{{dy}}{{dx}}\\<br /> \int {} \ln xdx = h\int {} dy/y\\<br /> x\log x/e = h\ln y + \ln c\\<br /> x\log x/e = h\ln y/C\\<br /> (x/h)\ln x/e = \ln y/C\\<br /> C(x/e)\frac{{x/h}}{1} = y = f(x)\\<br /> f(x + h) = C((x + h)/e)\frac{{(x + h)/h}}{1}\\<br /> f(x + h)/f(x) = (((x + h)/e)\frac{{(x + h)/h}}{1})/(x/e)\frac{{x/h}}{1}\\<br /> f(x + h)/f(x) = ((x + h)/x)\frac{{x/h}}{1})*((x + h)/e)\\<br /> f(x + h)/f(x) = (1 + h/x)\frac{{x/h}}{1}*((x + h)/e)\\<br /> \mathop {\lim }\limits_{h \to 0} f(x + h)/f(x) = \mathop {\lim }\limits_{h \to 0} e*((x + h)/e)\\<br /> \mathop {\lim }\limits_{h \to 0} f(x + h)/f(x) = \mathop {\lim }\limits_{h \to 0} (x + h)\\<br /> \mathop {\lim }\limits_{h \to 0} f(x + h)/f(x) = x\\<br /> \\<br /> <br /> \end{array}\]