Phyzguy:
We really use the word photon to describe two things. On the one hand, we refer to a photon as being an elementary excitation of the EM field, which has a definite: energy, wavelength, and frequency. These photons are the eigenstates of the EM field, and extend to +/- infinity.
On the other hand, we also use the word photon to refer to the wave packet emitted by an atom when it drops from one energy level to another. But this latter photon is not an energy eigenstate. It does not have a definite frequency, because the atom is not in the upper and lower energy states for an infinite time, so there is a time uncertainty which leads to an energy uncertainty. So the wave packet contains a range of frequencies, and multiple measurements of its energy would lead to a distribution of probable values. Because there is a range of frequencies and wavelengths, the wave packet is also bounded in space and time. The "size" of the wave packet (let's say the duration in time) depends on how long the atom is undisturbed. If the atom is in a very undisturbed environment, with a long time between collisions, then the wave packet is very sharp, with a long duration (Delta-t), and a small distribution of energies (Delta-E). If the atom is in an environment where collisions are frequent, then the wave packet is more spread out, with a short duration (Delta-t), and a broad distribution of energies (Delta-E).