Why does sqrt(25-x^2) need trigonometric Integration?

Click For Summary

Homework Help Overview

The discussion revolves around the integration of the function \( \sqrt{25 - x^2} \), which is related to the area under a semi-circle. Participants explore why trigonometric integration techniques may be necessary for this type of problem, particularly in the context of calculus.

Discussion Character

  • Exploratory, Conceptual clarification, Assumption checking

Approaches and Questions Raised

  • Participants question the reasoning behind the need for trigonometric integration instead of standard power integration techniques. They discuss the implications of the function's form and the relationship to geometric concepts like the Pythagorean theorem.

Discussion Status

There is an ongoing exploration of the conditions that suggest the use of trigonometric substitution. Some participants have offered insights into recognizing when simpler techniques may not apply, while others reflect on personal triggers for considering trigonometric methods.

Contextual Notes

Participants note that the integration involves a quadratic expression under a radical, which complicates the use of basic integration rules. There is also mention of potential alternative methods, such as numerical integration, indicating a variety of approaches being considered.

fateswarm
Messages
17
Reaction score
0
What tells me that when I need to integrate it I can't just do (25-x^2)^0.5 and go on from there with common power of x integration? What is the thing that tells me "hang on there, this requires trigonometric integration"?
 
Physics news on Phys.org
fateswarm said:
What tells me that when I need to integrate it I can't just do (25-x^2)^0.5 and go on from there with common power of x integration? What is the thing that tells me "hang on there, this requires trigonometric integration"?

The graph of the equation ##y = \sqrt{25-x^2}## is the upper semi-circle of radius 5, centered at (0,0). So, when you integrate y from x = a to x = b you are computing the area under part of a semi-circle, and that suggests that things like trigonometric functions will be needed.
 
  • Like
Likes   Reactions: 1 person
Ray Vickson said:
The graph of the equation ##y = \sqrt{25-x^2}## is the upper semi-circle of radius 5, centered at (0,0). So, when you integrate y from x = a to x = b you are computing the area under part of a semi-circle, and that suggests that things like trigonometric functions will be needed.

Thank you very much. I think I can go on from there; investigating it further.
 
fateswarm said:
What is the thing that tells me "hang on there, this requires trigonometric integration"?

I usually tell my students that trig sub is something you want to think about trying when you have a quadratic expression in a "bad place"; under a radical or in a denominator. Of course you'd want to look for an easy u-sub or algebraic rearrangement first, but that seems to be a good "trigger". Especially for textbook-style problems in a standard calc course.
 
fateswarm said:
What tells me that when I need to integrate it I can't just do (25-x^2)^0.5 and go on from there with common power of x integration? What is the thing that tells me "hang on there, this requires trigonometric integration"?

It doesn't "require" trigonometric substitution.
You might, for example, to arbitrary degree of accuracy, use numerical integration instead.

That being said, using trigonometric integration is very..clever.
 
fateswarm said:
What tells me that when I need to integrate it I can't just do (25-x^2)^0.5 and go on from there with common power of x integration?
Because the quantity being raised to the 1/2 power is not x.

The basic property is this:
$$\int x^n dx = \frac{x^{n+1}}{n+1} + C$$

If you have a function of x raised to the power, but still have dx in the integral, the formula above does not apply.
fateswarm said:
What is the thing that tells me "hang on there, this requires trigonometric integration"?
Most likely because simpler techniques such as substitution can't be used.
 
fateswarm said:
What tells me that when I need to integrate it I can't just do (25-x^2)^0.5 and go on from there with common power of x integration? What is the thing that tells me "hang on there, this requires trigonometric integration"?

Every time I ever see something that looks like ##y = \sqrt{a^2 ± b^2}## the first things that pop into my head is "Pythagorean theorem" and "triangle," and in the context of integration "trig substitution" comes immediately after. For me, I remember all the trig I used in geometry of right triangles, and that triggers me to think trig substitution (sorry bout the pun ;) ).
Mark44 said:
Because the quantity being raised to the 1/2 power is not x.

The basic property is this:
$$\int x^n dx = \frac{x^{n+1}}{n+1} + C$$

If you have a function of x raised to the power, but still have dx in the integral, the formula above does not apply.
Most likely because simpler techniques such as substitution can't be used.

Quick question. Do you mean more specifically, the quantity being raised to the 1/2 power is not the DUMMY VARIABLE of the integration? (which is x in this case)

If it were
$$\int x^n dx $$

we'd have the dummy variable (x) being raised to the power and could go ahead and use the rule. Is that right?
 
Raze said:
Every time I ever see something that looks like ##y = \sqrt{a^2 ± b^2}## the first things that pop into my head is "Pythagorean theorem" and "triangle," and in the context of integration "trig substitution" comes immediately after. For me, I remember all the trig I used in geometry of right triangles, and that triggers me to think trig substitution (sorry bout the pun ;) ).




Quick question. Do you mean more specifically, the quantity being raised to the 1/2 power is not the DUMMY VARIABLE of the integration? (which is x in this case)
Yes, that's exactly what I mean.
Raze said:
If it were
$$\int x^n dx $$

we'd have the dummy variable (x) being raised to the power and could go ahead and use the rule. Is that right?
Yes.

Here's an example where the above does not apply:
$$ \int (x^2 + 3x + 1)^3dx \neq \frac{(x^2 + 3x + 1)^4}{4} + C$$

In a similar vein, students often misapply this rule --
##\int \frac {dx}x = ln|x| + C##

to something that is incorrect, such as this:
## \int \frac {dx}{x^2 + 1} \neq ln|x^2 + 1| + C##
 

Similar threads

Replies
5
Views
1K
  • · Replies 6 ·
Replies
6
Views
2K
  • · Replies 24 ·
Replies
24
Views
4K
  • · Replies 5 ·
Replies
5
Views
2K
Replies
10
Views
2K
  • · Replies 9 ·
Replies
9
Views
2K
Replies
9
Views
3K
  • · Replies 27 ·
Replies
27
Views
3K
Replies
2
Views
1K
  • · Replies 3 ·
Replies
3
Views
2K