Puzzedd
- 2
- 0
Using summation((\stackrel{n}{k})xkyn-k) = (x+y)n, I let x = y = 1. This should then result in summation((\stackrel{n}{k})*1*1) = (1 + 1)n = 2n.
Expanding the summation, I get
(\stackrel{n}{0}) + (\stackrel{n}{1}) + ... +(\stackrel{n}{n}) = 2n.
Solving this results in
\frac{n!}{0!(n-0)!} + \frac{n!}{1!(n-1)!} + \frac{n!}{2!(n-2)!} + ... + \frac{n!}{(n-1)!(n-(n-1))!} + \frac{n!}{n!(n-n)!} = 2n
1 + n + \frac{n(n-1)}{2!} + \frac{n(n-1)(n-2)}{3!} + ... + n + 1 = 2n
2 + 2n + n(n-1) + \frac{n(n-1)(n-2)}{3} + ... = 2n
The issue I am having is that when I plug values of n into the left side I do not get the same answer with the right side.
n = 0 results in 2 + 2(0) + ... = 2, not 20
n = 1 results in 2 + 2(1) + 1(1-1) + ... = 4, not 21
n = 2 results in 2 + 2(2) + 2(2-1) + \frac{2(2-1)(2-2)}{3} + ... = 8, not 22
n = 3 results in 2 + 2(3) + 3(3-1) + \frac{3(3-1)(3-2)}{3} + ... = 16, not 23
This seems as if (\stackrel{n}{0}) + (\stackrel{n}{1}) + ... +(\stackrel{n}{n}) = 2n should really be
(\stackrel{n}{0}) + (\stackrel{n}{1}) + ... +(\stackrel{n}{n}) = 2n+1
Can anyone tell me why solving this summation is not consistent with the binomial theorem?
Expanding the summation, I get
(\stackrel{n}{0}) + (\stackrel{n}{1}) + ... +(\stackrel{n}{n}) = 2n.
Solving this results in
\frac{n!}{0!(n-0)!} + \frac{n!}{1!(n-1)!} + \frac{n!}{2!(n-2)!} + ... + \frac{n!}{(n-1)!(n-(n-1))!} + \frac{n!}{n!(n-n)!} = 2n
1 + n + \frac{n(n-1)}{2!} + \frac{n(n-1)(n-2)}{3!} + ... + n + 1 = 2n
2 + 2n + n(n-1) + \frac{n(n-1)(n-2)}{3} + ... = 2n
The issue I am having is that when I plug values of n into the left side I do not get the same answer with the right side.
n = 0 results in 2 + 2(0) + ... = 2, not 20
n = 1 results in 2 + 2(1) + 1(1-1) + ... = 4, not 21
n = 2 results in 2 + 2(2) + 2(2-1) + \frac{2(2-1)(2-2)}{3} + ... = 8, not 22
n = 3 results in 2 + 2(3) + 3(3-1) + \frac{3(3-1)(3-2)}{3} + ... = 16, not 23
This seems as if (\stackrel{n}{0}) + (\stackrel{n}{1}) + ... +(\stackrel{n}{n}) = 2n should really be
(\stackrel{n}{0}) + (\stackrel{n}{1}) + ... +(\stackrel{n}{n}) = 2n+1
Can anyone tell me why solving this summation is not consistent with the binomial theorem?