Mathematica Why Doesn't Chop[] Remove I.0 from the Output?

AI Thread Summary
Chop[] does not remove I.0 from the output because it is likely being treated as a scalar in the context of the input, which complicates the evaluation. The discussion highlights that the issue stems from using the dot product with I and matrices, leading to unexpected results. Users suggest that to eliminate I.0, it should be removed from the input, as taking the dot product of scalars can indicate a coding error. Additionally, the difference between Conjugate[] and Conjugate'[] is clarified, with the latter representing the derivative of the conjugate. The conversation emphasizes the importance of understanding the documentation for functions like Dot to avoid such issues.
Natthawin Cho
Messages
5
Reaction score
0
As I found on many websites, they suggest to use Chop[]. I tried that already but it doesn't work.

This is my output.

{{2 (Conjugate[
I.0] I.0 + (Conjugate[I.0] + Conjugate[Subscript[v, 1]]/Sqrt[
2]) (I.0 + Subscript[v, 1]/Sqrt[2])) Subscript[\[Lambda],
1] (Conjugate[I.0] + Conjugate[Subscript[v, 1]]/Sqrt[
2] + (I.0 + Subscript[v, 1]/Sqrt[2]) Derivative[1][Conjugate][
I.0 + Subscript[v, 1]/Sqrt[2]]) + (Conjugate[
I.0] I.0 + (Conjugate[I.0] + Conjugate[Subscript[v, 2]]/Sqrt[
2]) (I.0 + Subscript[v, 2]/Sqrt[2])) Subscript[\[Lambda],
5] (Conjugate[I.0] + Conjugate[Subscript[v, 1]]/Sqrt[
2] + (I.0 + Subscript[v, 1]/Sqrt[2]) Derivative[1][Conjugate][
I.0 + Subscript[v, 1]/Sqrt[2]]) +
1/2 (2 Conjugate[
I.0] I.0 + (Conjugate[I.0] + Conjugate[Subscript[v, 2]]/Sqrt[
2]) (I.0 + Subscript[v, 1]/Sqrt[2]) + (Conjugate[I.0] +
Conjugate[Subscript[v, 1]]/Sqrt[2]) (I.0 + Subscript[v, 2]/
Sqrt[2])) Subscript[\[Lambda],
6] (Conjugate[I.0] + Conjugate[Subscript[v, 1]]/Sqrt[
2] + (I.0 + Subscript[v, 1]/Sqrt[2]) Derivative[1][Conjugate][
I.0 + Subscript[v, 1]/Sqrt[2]]) -
1/2 I (-(Conjugate[I.0] + Conjugate[Subscript[v, 2]]/Sqrt[
2]) (I.0 + Subscript[v, 1]/Sqrt[2]) + (Conjugate[I.0] +
Conjugate[Subscript[v, 1]]/Sqrt[2]) (I.0 + Subscript[v, 2]/
Sqrt[2])) Subscript[\[Lambda],
8] (Conjugate[I.0] + Conjugate[Subscript[v, 1]]/Sqrt[
2] + (I.0 + Subscript[v, 1]/Sqrt[2]) Derivative[1][Conjugate][
I.0 + Subscript[v, 1]/Sqrt[2]]) - \!\(
\*SubsuperscriptBox[\(\[Mu]\), \(1\), \(2\)]\ \((Conjugate[I . 0] +
\*FractionBox[\(Conjugate[
\*SubscriptBox[\(v\), \(1\)]]\),
SqrtBox[\(2\)]] + \((I . 0 +
\*FractionBox[
SubscriptBox[\(v\), \(1\)],
SqrtBox[\(2\)]])\)\ \*
SuperscriptBox["Conjugate", "\[Prime]",
MultilineFunction->None][I . 0 +
\*FractionBox[
SubscriptBox[\(v\), \(1\)],
SqrtBox[\(2\)]]])\)\) -
1/2 (-(Conjugate[I.0] + Conjugate[Subscript[v, 2]]/Sqrt[2]) (I.0 +
Subscript[v, 1]/Sqrt[2]) + (Conjugate[I.0] +
Conjugate[Subscript[v, 1]]/Sqrt[2]) (I.0 + Subscript[v, 2]/
Sqrt[2])) Subscript[\[Lambda],
4] (-Conjugate[I.0] - Conjugate[Subscript[v, 2]]/Sqrt[
2] + (I.0 + Subscript[v, 2]/Sqrt[2]) Derivative[1][Conjugate][
I.0 + Subscript[v, 1]/Sqrt[2]]) -
1/2 I (Conjugate[
I.0] I.0 + (Conjugate[I.0] + Conjugate[Subscript[v, 1]]/Sqrt[
2]) (I.0 + Subscript[v, 1]/Sqrt[2])) Subscript[\[Lambda],
8] (-Conjugate[I.0] - Conjugate[Subscript[v, 2]]/Sqrt[
2] + (I.0 + Subscript[v, 2]/Sqrt[2]) Derivative[1][Conjugate][
I.0 + Subscript[v, 1]/Sqrt[2]]) -
1/2 I (Conjugate[
I.0] I.0 + (Conjugate[I.0] + Conjugate[Subscript[v, 2]]/Sqrt[
2]) (I.0 + Subscript[v, 2]/Sqrt[2])) Subscript[\[Lambda],
9] (-Conjugate[I.0] - Conjugate[Subscript[v, 2]]/Sqrt[
2] + (I.0 + Subscript[v, 2]/Sqrt[2]) Derivative[1][Conjugate][
I.0 + Subscript[v, 1]/Sqrt[2]]) -
1/4 I (2 Conjugate[
I.0] I.0 + (Conjugate[I.0] + Conjugate[Subscript[v, 2]]/Sqrt[
2]) (I.0 + Subscript[v, 1]/Sqrt[2]) + (Conjugate[I.0] +
Conjugate[Subscript[v, 1]]/Sqrt[2]) (I.0 + Subscript[v, 2]/
Sqrt[2])) Subscript[\[Lambda],
10] (-Conjugate[I.0] - Conjugate[Subscript[v, 2]]/Sqrt[
2] + (I.0 + Subscript[v, 2]/Sqrt[2]) Derivative[1][Conjugate][
I.0 + Subscript[v, 1]/Sqrt[2]]) + 1/2 I
\!\(\*SubsuperscriptBox[\(\[Mu]\), \(4\), \(2\)]\) (-Conjugate[I.0] -
Conjugate[Subscript[v, 2]]/Sqrt[
2] + (I.0 + Subscript[v, 2]/Sqrt[2]) Derivative[1][Conjugate][
I.0 + Subscript[v, 1]/Sqrt[2]]) +
1/2 (2 Conjugate[
I.0] I.0 + (Conjugate[I.0] + Conjugate[Subscript[v, 2]]/Sqrt[
2]) (I.0 + Subscript[v, 1]/Sqrt[2]) + (Conjugate[I.0] +
Conjugate[Subscript[v, 1]]/Sqrt[2]) (I.0 + Subscript[v, 2]/
Sqrt[2])) Subscript[\[Lambda],
3] (Conjugate[I.0] + Conjugate[Subscript[v, 2]]/Sqrt[
2] + (I.0 + Subscript[v, 2]/Sqrt[2]) Derivative[1][Conjugate][
I.0 + Subscript[v, 1]/Sqrt[2]]) +
1/2 (Conjugate[
I.0] I.0 + (Conjugate[I.0] + Conjugate[Subscript[v, 1]]/Sqrt[
2]) (I.0 + Subscript[v, 1]/Sqrt[2])) Subscript[\[Lambda],
6] (Conjugate[I.0] + Conjugate[Subscript[v, 2]]/Sqrt[
2] + (I.0 + Subscript[v, 2]/Sqrt[2]) Derivative[1][Conjugate][
I.0 + Subscript[v, 1]/Sqrt[2]]) +
1/2 (Conjugate[
I.0] I.0 + (Conjugate[I.0] + Conjugate[Subscript[v, 2]]/Sqrt[
2]) (I.0 + Subscript[v, 2]/Sqrt[2])) Subscript[\[Lambda],
7] (Conjugate[I.0] + Conjugate[Subscript[v, 2]]/Sqrt[
2] + (I.0 + Subscript[v, 2]/Sqrt[2]) Derivative[1][Conjugate][
I.0 + Subscript[v, 1]/Sqrt[2]]) -
1/4 I (-(Conjugate[I.0] + Conjugate[Subscript[v, 2]]/Sqrt[
2]) (I.0 + Subscript[v, 1]/Sqrt[2]) + (Conjugate[I.0] +
Conjugate[Subscript[v, 1]]/Sqrt[2]) (I.0 + Subscript[v, 2]/
Sqrt[2])) Subscript[\[Lambda],
10] (Conjugate[I.0] + Conjugate[Subscript[v, 2]]/Sqrt[
2] + (I.0 + Subscript[v, 2]/Sqrt[2]) Derivative[1][Conjugate][
I.0 + Subscript[v, 1]/Sqrt[2]]) - 1/2
\!\(\*SubsuperscriptBox[\(\[Mu]\), \(3\), \(2\)]\) (Conjugate[I.0] +
Conjugate[Subscript[v, 2]]/Sqrt[
2] + (I.0 + Subscript[v, 2]/Sqrt[2]) Derivative[1][Conjugate][
I.0 + Subscript[v, 1]/Sqrt[2]])}}

I also would like to know the difference between Conjugate[] and Conjugate'[].
 
Physics news on Phys.org
This is the screenshot.
cats.jpg
 
What is the input that gave you this?
 
To remove I.0 from your output you should probably remove it from your input. It doesn't make sense to take the dot product of two scalars. I think it indicates an error in your code.
 
I solved that problem already. The error is in my code. I used I dot with matrix. However, I have 1x2 matrix times 2x1 matrix and I get 1x1 matrix. Can I change this to scalar?
 
To me it doesn't make sense to have a dot product of I with anything.

If you read the documentation on Dot it says that if either of the arguments are not lists then the Dot remains unevaluated. So that is consistent with the behavior that we see.
 
Last edited:

Similar threads

Replies
2
Views
2K
Replies
19
Views
2K
Replies
1
Views
2K
Replies
10
Views
3K
Replies
2
Views
2K
Replies
3
Views
2K
Replies
22
Views
2K
Replies
7
Views
2K
Back
Top