Why doesn't orbital angular momentum operator L commute with scalar operator S?

  • Thread starter Thread starter fayled
  • Start date Start date
  • Tags Tags
    Commutation Rules
fayled
Messages
176
Reaction score
0
So the total angular momentum operator J commutes with any scalar operator S. The argument for this is that J is the generator of 'turntable rotations' (by this I mean we rotate the whole object about an axis, along with its orientation) and the expectation value of any scalar operator has to be invariant under such a rotation. This tells us that S commutes with the rotation operator and thus its generator J.

My question is why doesn't a similar argument hold for the orbital angular momentum operator L? The difference is that L generates rotations that rotate only the object but not its orientation around an axis. However surely the expectation value of a scalar operator should still be invariant under this type of rotation, meaning L and S commute. However this is not the case, because I know that any component of L does not commute with J2.
 
Physics news on Phys.org
Scalar operators that involve the orientation of the object may not be invariant under the rotations generated by ##\vec L##. For example consider the angle between an electron's spin axis and its momentum. This angle is a scalar quantity (related to the scalar operator ##\vec S \cdot \vec P##) which is invariant under the full rotations generated by ##\vec J##. But it is not invariant under the rotations generated by ##\vec L##, which will rotate the momentum but not the spin. You can confirm that ##[\vec J, \vec S \cdot \vec P] = 0## while ##[\vec L, \vec S \cdot \vec P] \neq 0##.
 
  • Like
Likes Nugatory
The_Duck said:
Scalar operators that involve the orientation of the object may not be invariant under the rotations generated by ##\vec L##. For example consider the angle between an electron's spin axis and its momentum. This angle is a scalar quantity (related to the scalar operator ##\vec S \cdot \vec P##) which is invariant under the full rotations generated by ##\vec J##. But it is not invariant under the rotations generated by ##\vec L##, which will rotate the momentum but not the spin. You can confirm that ##[\vec J, \vec S \cdot \vec P] = 0## while ##[\vec L, \vec S \cdot \vec P] \neq 0##.

Beautiful, thanks!
 
Insights auto threads is broken atm, so I'm manually creating these for new Insight articles. Towards the end of the first lecture for the Qiskit Global Summer School 2025, Foundations of Quantum Mechanics, Olivia Lanes (Global Lead, Content and Education IBM) stated... Source: https://www.physicsforums.com/insights/quantum-entanglement-is-a-kinematic-fact-not-a-dynamical-effect/ by @RUTA
If we release an electron around a positively charged sphere, the initial state of electron is a linear combination of Hydrogen-like states. According to quantum mechanics, evolution of time would not change this initial state because the potential is time independent. However, classically we expect the electron to collide with the sphere. So, it seems that the quantum and classics predict different behaviours!
Back
Top