Why is hysteresis loss proportional to area hysteresis loop ?

Click For Summary
SUMMARY

The hysteresis loss in ferromagnetic materials is directly proportional to the area of the hysteresis loop, which is defined by the magnetic field strength (H) on the horizontal axis and magnetic flux density (B) on the vertical axis. This relationship arises because changing the magnetization of a material requires work to redirect the electron spins, resulting in energy loss represented by the integral of H and B over the loop area. The quantum-mechanical nature of electron spin alignment contributes to this phenomenon, emphasizing the importance of understanding the energy gap between magnetized and unmagnetized states.

PREREQUISITES
  • Understanding of ferromagnetism and magnetic properties of materials
  • Familiarity with hysteresis loops and their graphical representation
  • Basic knowledge of quantum mechanics related to electron spins
  • Proficiency in calculus, specifically integration techniques
NEXT STEPS
  • Research the mathematical derivation of hysteresis loss in ferromagnetic materials
  • Explore the impact of temperature on hysteresis behavior in different materials
  • Learn about applications of hysteresis in magnetic storage devices
  • Investigate advanced topics in quantum mechanics related to magnetization
USEFUL FOR

Physicists, materials scientists, electrical engineers, and anyone studying the magnetic properties of materials and their applications in technology.

fxdung
Messages
387
Reaction score
23
Why does hysteresis loss cause heat and why the heat proportional the area of hysteresis loop?
 
Science news on Phys.org
Perhaps you can tell us what loop you are talking about: what's on the horizontal axis and what's on the vertical axis ? So what's the dimension of the area ?
 
  • Like
Likes   Reactions: Dale and vanhees71
The horizontal axis is H and the vertical axis is B
 
Ferromagnetism occurs when it is energetically favorable that the spins of the electrons in the material are ordered in one direction and there's an "energy gap" between this magnetized state and the unmagnetized state. The microscopic reason that this happens in some few materials is quantum-mechanical. On the macroscopic level it's sufficient to know that this energy argument holds. This, however implies that to change the magnetization you need to do work to redirect the spins, and the change of energy is given by ##\int \mathrm{d} H B##, i.e., the area under the hysteresis curve.
 
  • Like
  • Informative
Likes   Reactions: cabraham, fxdung and anorlunda

Similar threads

Replies
4
Views
2K
  • · Replies 9 ·
Replies
9
Views
4K
  • · Replies 5 ·
Replies
5
Views
2K
  • · Replies 5 ·
Replies
5
Views
2K
  • · Replies 26 ·
Replies
26
Views
11K
  • · Replies 15 ·
Replies
15
Views
3K
  • · Replies 2 ·
Replies
2
Views
1K
  • · Replies 2 ·
Replies
2
Views
4K
  • · Replies 3 ·
Replies
3
Views
1K
  • · Replies 1 ·
Replies
1
Views
2K