Cthugha said:
1. ... my opinion is that the standard QFT version described in detail by
@vanhees71 is not classically local causal. I do not actually see how one gets the impression that he describes it as such.
2. I do not really see your point here. Maybe I am missing something simple. The consensus is that local realism is not a viable option. I fully agree with that. There is no consensus whether non-locality or non-realism/contextuality is more suitable (or both). Essentially, all
@vanhees71 does, is to merge the minimal statistical interpretation with QFT and by doing so, QFT of course reproduces what is expected in Bell-type experiments. It just has the standard drawback of the minimal interpretation that some people find it lacking in terms of ontology. In a nutshell it is "shut up and calculate", which obviously does not require collapse or ontological non-locality and of course is fully described by knowing the state preparation procedures. However, QFT is of course silent on how to interpret the math.
1. Per Vanhees71: "Under the assumption of a non-local deterministic theory there's be the violation to the space-time model of special relativity, but that contradicts the empirical facts about its very validity, particularly the universality of the speed of light in vacuum. The only conclusion from this experiment (as from many others) thus can be that non-local deterministic models contradict fundamental physics, which is not the case for
local (microcausal) relativistic QFT, which in turn describes the observed results of all Bell tests known today. "
He is flat out saying that a non-local deterministic theory (Bohmian Mechanics being one) is excluded as a viable option. That is certainly far from consensus, even if there is not a relativistic version of Bohmian Mechanics at this time.
He is also saying QFT is local microcausal. I admittedly do not follow the distinction between "local causal" and "local microcausal". However, if I don't follow that distinction, I doubt many others do either unless they are knee deep in QFT. The term "microcausal" does not show up in papers on entanglement, ergo I assume it is not relevant. In fact, I would say as a rule that elements of QFT (as opposed to older QM) are not usually referenced in papers on entanglement.
2. I agree with everything you say here. So apparently the point missed is: whether it is non-locality or non-realism/contextuality that rules, the effect is called Quantum Nonlocality in the literature and it is a generally accepted feature in the quantum world. Attempting to mask this by calling it "nonlocal correlations that result from local microcausality" goes against the grain of almost any publication, either lay or scientific. Just this year, an entire book was written on this so I guess we should call them up and tell them to retitle it "Local Microcausality". So I would say it is very misleading to label it "local microcausality" when the Bell options are to reject locality or to reject realism/contextuality. I can't even get Vanhees71 to acknowledge that QFT is either nonlocal or contextual. So obviously he is trying to have his cake and eat it too.
@Cthugha the rest of this below is not directed at you, but to all.
----------------------------------------------------
How are we supposed to get a useful message across in our many threads if we are not using standard arguments and terminology? We can't be publishing book-long arguments to answer straight-forward questions. The OPs won't be able to interpret them.
If Steven Weinberg published a graduate level book in 2012 on Quantum Mechanics saying the following 2 statements, and I am getting flak for stating these exact words as my position: something is seriously wrong. I don't think it's with me. And this is not Weinberg being sloppy with language either (which a couple of posters here have accused him of being, unfairly and in my opinion insultingly).
"There is a troubling weirdness about quantum mechanics. Perhaps its weirdest feature is entanglement, the need to describe even systems that extend over macroscopic distances in ways that are inconsistent with classical ideas. "
"...according to present ideas a measurement in one subsystem does change the state vector for a distant isolated subsystem ..."
or from
Vaidman (2019):
"It is important to understand what the meaning of nonlocality is in quantum theory. Quantum theory does not have the strongest and simplest concept of nonlocality, which is the possibility of making an instantaneous observable local change at a distance. However, all single-world interpretations do have actions at a distance. The quantum nonlocality also has an operational meaning for us, local observers, who can live only in a single world. Given entangled particles placed at a distance, a measurement on one of the particles instantaneously changes the quantum state of the other, from a density matrix to a pure state. It is only in the framework of the many-worlds interpretation, considering all worlds together, where the measurement causes no change in the remote particle, and it remains to be described by a density matrix."
If anyone here is afraid to make these statements because they are not suitably detailed or accurate enough, lord help us.
-DrC