I Why is K an anti-unitary operator in (26)?

thatboi
Messages
130
Reaction score
20
Hey all,
I just wanted to double check my understanding of (26) in the following notes: https://arxiv.org/pdf/1512.08882.pdf.
Is the reason that ##(U_{T}\cdot K) \cdot (U_{C}\cdot K) = U_{T}\cdot U_{C}^{*}## because ##K## is a unitary operators and thus ##(K\cdot U_{C}\cdot K) = U_{C}^{*}## as we would expect of a unitary transformation?
 
Physics news on Phys.org
thatboi said:
Hey all,
I just wanted to double check my understanding of (26) in the following notes: https://arxiv.org/pdf/1512.08882.pdf.
Is the reason that ##(U_{T}\cdot K) \cdot (U_{C}\cdot K) = U_{T}\cdot U_{C}^{*}## because ##K## is a unitary operators and thus ##(K\cdot U_{C}\cdot K) = U_{C}^{*}## as we would expect of a unitary transformation?
No, it says explicitly that K is an anti-unitary operator, not a unitary one. Specifically, K implements complex conjugation.
 
From the BCS theory of superconductivity is well known that the superfluid density smoothly decreases with increasing temperature. Annihilated superfluid carriers become normal and lose their momenta on lattice atoms. So if we induce a persistent supercurrent in a ring below Tc and after that slowly increase the temperature, we must observe a decrease in the actual supercurrent, because the density of electron pairs and total supercurrent momentum decrease. However, this supercurrent...
Hi. I have got question as in title. How can idea of instantaneous dipole moment for atoms like, for example hydrogen be consistent with idea of orbitals? At my level of knowledge London dispersion forces are derived taking into account Bohr model of atom. But we know today that this model is not correct. If it would be correct I understand that at each time electron is at some point at radius at some angle and there is dipole moment at this time from nucleus to electron at orbit. But how...
Back
Top