Why is M Torsion-free & Rank 1 but Not a Free R-Module?

  • Thread starter Thread starter hypermonkey2
  • Start date Start date
  • Tags Tags
    Modules
hypermonkey2
Messages
101
Reaction score
0
Hi all, I came across this problem in a book and I can`t seem to crack it.
It says that if we have an integral domain R and M is any non-principal ideal of R,
then
M is torsion-free of rank 1 and is NOT a free R-module.

Why is this true?

cheers
 
Physics news on Phys.org
ah so i see why it needs to be torsion free. (M lies in R, so if there is r such that rm=0, R can't be an integral domain...)

but what about the rank? Why must it be 1? I am also surprised that it is not free..
 
##\textbf{Exercise 10}:## I came across the following solution online: Questions: 1. When the author states in "that ring (not sure if he is referring to ##R## or ##R/\mathfrak{p}##, but I am guessing the later) ##x_n x_{n+1}=0## for all odd $n$ and ##x_{n+1}## is invertible, so that ##x_n=0##" 2. How does ##x_nx_{n+1}=0## implies that ##x_{n+1}## is invertible and ##x_n=0##. I mean if the quotient ring ##R/\mathfrak{p}## is an integral domain, and ##x_{n+1}## is invertible then...
The following are taken from the two sources, 1) from this online page and the book An Introduction to Module Theory by: Ibrahim Assem, Flavio U. Coelho. In the Abelian Categories chapter in the module theory text on page 157, right after presenting IV.2.21 Definition, the authors states "Image and coimage may or may not exist, but if they do, then they are unique up to isomorphism (because so are kernels and cokernels). Also in the reference url page above, the authors present two...
When decomposing a representation ##\rho## of a finite group ##G## into irreducible representations, we can find the number of times the representation contains a particular irrep ##\rho_0## through the character inner product $$ \langle \chi, \chi_0\rangle = \frac{1}{|G|} \sum_{g\in G} \chi(g) \chi_0(g)^*$$ where ##\chi## and ##\chi_0## are the characters of ##\rho## and ##\rho_0##, respectively. Since all group elements in the same conjugacy class have the same characters, this may be...
Back
Top