B Why is sine not used for dot product?

AI Thread Summary
Cosine is used for the dot product because it represents the simplest metric for determining the relationship between two vectors, specifically their projection onto each other. The dot product, defined as A·B = |A||B|cos(angle), calculates how much of one vector lies in the direction of another. Using sine would complicate this by introducing additional information that would need to be accounted for. The discussion also touches on the geometric interpretation of cosine as the starting point of the unit circle, where cos(0) = 1 and sin(0) = 0, emphasizing its role in vector projections. Overall, the dot product's reliance on cosine stems from its straightforward application in measuring vector alignment.
Kirkkh
Messages
1
Reaction score
0
TL;DR Summary
Re-examine an old question on here from 2012 “Why sine is used for cross product and cosine for dot product?
There’s a old 2012 post on here “Why sine is used for cross product and cosine for dot product?” —there are a lot of great answers (which is how I came about this forum). After reading over the replies, it occurred to me: really it’s just because cosine is the “start” of a unit circle.

Which is to say we set up a “dot product” to be a single number, it’s a simple idea —how do two similar vectors relate? Given that —we use the simplest metric (cosine). If we used sine (again, not being at the bringing of the circle) it would add additional information that would need to be subtracted.

So I guess a better question would of been: why is cosine the beginning of the unit circle? (which I’m sure there’s many good reasons for).
 
Mathematics news on Phys.org
It is because the dot product is the projection of one vector onto another. If you draw a diagram and calculate the projected length of the shorter onto the longer vector, it goes as cosine of the angle by elementary trigonometry. Invoking a unit circle would restrict dot products to unit vectors.
 
  • Like
Likes WWGD
I look at it in a vector sense. I have a two vectors A and B and I want to know what is the projection of A on B and what portion of A is NOT projected on B ie is perpendicular to B.

The projection can be found by the dot product A.B = |A||B|cos(angle_between_A_and_B).

This comes from thinking of A as the hypotenuse of a right triangle and B as a side and |B|/|A|= cos(angle_between_A_and_B) . Notice |A|sin(angle_between_A_and_B) is the other side of the triangle.

Hence, for the projection of A on B we get |A|cos(angle_between_A_and_B)

Next for the portion of A that is NOT projected onto B ie that is perpendicular to B.

We use the cross product and sin(angle_between_A_and_B) and for symmetry we define the result as a vector perpendicular to both A and B:

whose length is: |AxB| = |A||B|sin(angle_between_A_and_B)
 
Kirkkh said:
“Why sine is used for cross product and cosine for dot product?” —there are a lot of great answers (which is how I came about this forum). After reading over the replies, it occurred to me: really it’s just because cosine is the “start” of a unit circle.
??
Why do you think that cosine is the "start" of the unit circle?
The "start" of the unit circle would be the point (1, 0) for an angle of 0 (radians). At this point ##\cos(0) = 1## and ##\sin(0) = 0##. So both trig functions are involved, as they are at all points of the unit circle.
Kirkkh said:
Given that —we use the simplest metric (cosine). If we used sine (again, not being at the bringing of the circle) it would add additional information that would need to be subtracted.
Why do you think that cosine is the simpler metric?
In relation to two vectors with components among the reals, there are two definitions for the dot product: a coordinate definition, and a coordinate-free definition.
The coordinate definition is ##u \cdot v = u_1v_1 + u_2v_2 + \dots + u_nv_n##.
The coordinate-free definition is ##u \cdot v = |u||v|\cos(\theta)##, where ##\theta## is the angle between the two vectors.
 
  • Like
Likes jedishrfu
Thread 'Video on imaginary numbers and some queries'
Hi, I was watching the following video. I found some points confusing. Could you please help me to understand the gaps? Thanks, in advance! Question 1: Around 4:22, the video says the following. So for those mathematicians, negative numbers didn't exist. You could subtract, that is find the difference between two positive quantities, but you couldn't have a negative answer or negative coefficients. Mathematicians were so averse to negative numbers that there was no single quadratic...
Insights auto threads is broken atm, so I'm manually creating these for new Insight articles. In Dirac’s Principles of Quantum Mechanics published in 1930 he introduced a “convenient notation” he referred to as a “delta function” which he treated as a continuum analog to the discrete Kronecker delta. The Kronecker delta is simply the indexed components of the identity operator in matrix algebra Source: https://www.physicsforums.com/insights/what-exactly-is-diracs-delta-function/ by...
Thread 'Unit Circle Double Angle Derivations'
Here I made a terrible mistake of assuming this to be an equilateral triangle and set 2sinx=1 => x=pi/6. Although this did derive the double angle formulas it also led into a terrible mess trying to find all the combinations of sides. I must have been tired and just assumed 6x=180 and 2sinx=1. By that time, I was so mindset that I nearly scolded a person for even saying 90-x. I wonder if this is a case of biased observation that seeks to dis credit me like Jesus of Nazareth since in reality...

Similar threads

Back
Top