Define Dot Product: A.B = ||A|| ||B|| cos(theta)

In summary, the conversation discusses two different proofs for the formula of A.B, involving the distributive property of dot product and the definition of dot product. The cosine rule and projections are used in the proofs, and the concept of inner product space is mentioned as a useful resource for understanding the dot product.
  • #1
parshyaa
307
19
I have seen a proof for the formula of A.B =
||A|| ||B|| cos(theta)[ proof using the diagram and cosine rule]. In the proof they have assumed that distributive property of dot product is right. diagram is given below
100px-Dot_product_cosine_rule.svg.png
c.c =(a-b).(a-b) = a^2 +b^2 -2(a.b) [ here they used distributive law]
  • I have seen another proof for the distributive property of dot product. There they have assumed that A.B = ||A|| ||B|| cos(theta),And used projections. They have used the diagram as given below.
1280px-Dot_product_distributive_law.svg.png

And projection of vector B on A is ||B||cos(theta) = B.a^ ( a^ is a unit vector in the direction of a vector)[ this is possible if the formula of dot product is assumed to be right.
  • How they can do this , for proving dot product A.B = ||A|| ||B|| cos(theta) they have assumed distributive property to be right and for prooving distributive property they have assumed dot product to be right.
Therefore I think that there will be a definition for dot product wether it is A.B = ||A|| ||B|| cos(theta) or A.B = a1a2 +b1b2 +c1c2 (component form). If its a definition then how they have defined it like this.
 
Last edited by a moderator:
Mathematics news on Phys.org
  • #2
The distributive property of inner product follows immediately from the basic definition of the standard inner product. Given two vectors ##\mathbf v## and ##\mathbf w##, their inner product is ##(\mathbf v, \mathbf w) = \overline v_1 w_1 + \overline v_2 w_2 + \ldots + \overline v_N w_N##. From this, it should be straight forward to see that ##(\mathbf v + \mathbf w,\mathbf z) = (\mathbf v,\mathbf z)+(\mathbf w,\mathbf z)##.
 
  • #5
Hey parshyaa.

The cosine rule is done for the general proof and one uses the results for length in arbitrary R^n.
 

Similar threads

Back
Top