Why is static friction not considered in the work-energy theorem?

AI Thread Summary
Static friction does not perform work in the context of the work-energy theorem because the point of contact does not move, resulting in zero displacement (Fdx = 0). This characteristic allows for efficient rolling motion without energy loss, as seen in vehicles where tires maintain their rubber. While static friction can affect the motion of objects in contact, it does not contribute to net work done in a system. The discussion highlights that while individual perspectives on work done by friction may vary, the overall conclusion remains that static friction does not result in net work. Understanding this principle is crucial for applying the conservation of energy in mechanics.
phantomvommand
Messages
287
Reaction score
39
Homework Statement
A ball rolls down a sphere (without slipping). At what height will the ball lose contact with the sphere?
Ball radius = r, sphere radius = R, ball mass = m, ball I = 2/5mr^2
Relevant Equations
Conservation of energy:
mg(R+r)(1-cos theta) = 1/2mv^2 + 1/2 I w^2.
My question is this:
- Friction exists (for no slipping/pure rolling to occur)
- Why is the work done against friction not accounted for in the conservation of energy equation?

Thank you!
 
Physics news on Phys.org
phantomvommand said:
My question is this:
- Friction exists (for no slipping/pure rolling to occur)
- Why is the work done against friction not accounted for in the conservation of energy equation?
For no slipping, you have static friction, which does no work.
 
  • Like
Likes phantomvommand
PeroK said:
For no slipping, you have static friction, which does no work.
Just to confirm, you mean that it does no work as the point of contact is not moving (ie Fdx = 0, as dx = 0?)
 
phantomvommand said:
Just to confirm, you mean that it does no work as the point of contact is not moving (ie Fdx = 0, as dx = 0?)
Yes, that's why rolling is so efficient. And why you don't lose rubber off your car tyres when drving normally.
 
  • Like
Likes Keith_McClary and phantomvommand
phantomvommand said:
Just to confirm, you mean that it does no work as the point of contact is not moving (ie Fdx = 0, as dx = 0?)
It depends how you are defining dx. If as the relative motion of the surfaces then yes, dx=0.
But consider a block resting on an accelerating block, no sliding.
As far as the top block is concerned friction is doing work on it. If that block advances distance x then the work done is Ffx. The lower block takes the opposite view, i.e. the work done by the friction is -Ffx.
In short, no net work is done by static friction.
 
  • Like
Likes phantomvommand
Kindly see the attached pdf. My attempt to solve it, is in it. I'm wondering if my solution is right. My idea is this: At any point of time, the ball may be assumed to be at an incline which is at an angle of θ(kindly see both the pics in the pdf file). The value of θ will continuously change and so will the value of friction. I'm not able to figure out, why my solution is wrong, if it is wrong .
Thread 'Trying to understand the logic behind adding vectors with an angle between them'
My initial calculation was to subtract V1 from V2 to show that from the perspective of the second aircraft the first one is -300km/h. So i checked with ChatGPT and it said I cant just subtract them because I have an angle between them. So I dont understand the reasoning of it. Like why should a velocity be dependent on an angle? I was thinking about how it would look like if the planes where parallel to each other, and then how it look like if one is turning away and I dont see it. Since...
Thread 'Voltmeter readings for this circuit with switches'
TL;DR Summary: I would like to know the voltmeter readings on the two resistors separately in the picture in the following cases , When one of the keys is closed When both of them are opened (Knowing that the battery has negligible internal resistance) My thoughts for the first case , one of them must be 12 volt while the other is 0 The second case we'll I think both voltmeter readings should be 12 volt since they are both parallel to the battery and they involve the key within what the...
Back
Top