Why Is Substitution Failing in Integrating This Function?

songoku
Messages
2,470
Reaction score
384
Homework Statement
Find
$$\int \frac{x^3}{\sqrt{16x-x^8}}dx$$
Relevant Equations
u - substitution

trigonometry substitution
I tried using substitution ##u=\sqrt{16x-x^8}##, didn't work

Tried factorize ##x## from the denominator and then used ##u=\sqrt{16-x^7}##, didn't work

Tried using ##u=x^4## also didn't work

How to approach this question? Thanks
 
Physics news on Phys.org
songoku said:
Tried factorize ##x## from the denominator and then used ##u=\sqrt{16-x^7}##, didn't work
This was the right approach, but your u-sub is too fancy. Use a different u-sub from the expression ##\sqrt{x(16-x^7)}##.
It falls into place after that. In this problem you'll have to bring something back from outside the square root (which you'll see once you use the right U-sub), a complete the square, and a trig sub.
 
Thank you very much for the help romsofia
 
##u=\frac{x^{7/2}}{4}## looks promising
 
Prove $$\int\limits_0^{\sqrt2/4}\frac{1}{\sqrt{x-x^2}}\arcsin\sqrt{\frac{(x-1)\left(x-1+x\sqrt{9-16x}\right)}{1-2x}} \, \mathrm dx = \frac{\pi^2}{8}.$$ Let $$I = \int\limits_0^{\sqrt 2 / 4}\frac{1}{\sqrt{x-x^2}}\arcsin\sqrt{\frac{(x-1)\left(x-1+x\sqrt{9-16x}\right)}{1-2x}} \, \mathrm dx. \tag{1}$$ The representation integral of ##\arcsin## is $$\arcsin u = \int\limits_{0}^{1} \frac{\mathrm dt}{\sqrt{1-t^2}}, \qquad 0 \leqslant u \leqslant 1.$$ Plugging identity above into ##(1)## with ##u...

Similar threads

Replies
105
Views
4K
Replies
44
Views
5K
Replies
22
Views
3K
Replies
12
Views
2K
Replies
28
Views
2K
Replies
8
Views
2K
Replies
5
Views
1K
Back
Top