Why Is the Chain Rule Not Used in Differentiating h(x) = 3f(x) + 8g(x)?

Click For Summary
The chain rule is not applicable in differentiating h(x) = 3f(x) + 8g(x) because there are no inner functions present; both f(x) and g(x) are direct functions of x. The derivative of h(x) can be computed using the sum rule and constant multiple rules, resulting in h'(x) = 3f'(x) + 8g'(x). The discussion clarifies that the chain rule is specifically for compositions of functions, which is not the case here. Additionally, it emphasizes the correct terminology for differentiation. Understanding these principles allows for accurate calculation of derivatives in similar problems.
member 731016
Homework Statement
Please see below
Relevant Equations
Please see below
For part(a),
1683504334746.png

The solution is,
1683504351004.png

However, why do they not take the derivative of the inner function (if it exists) of f(x) or g(x) using the chain rule? For example if ##f(x) = \sin(x^2)##

Many thanks!
 
Physics news on Phys.org
ChiralSuperfields said:
Homework Statement: Please see below
Relevant Equations: Please see below

For part(a),
View attachment 326130
The solution is,
View attachment 326131
However, why do they not take the derivative of the inner function (if it exists) of f(x) or g(x) using the chain rule? For example if ##f(x) = \sin(x^2)##

Many thanks!
There is no inner function. The chain rule is for a composition of functions, like f(g(x)). That does not appear in this problem. The derivative is with respect to x and both f(x) and g(x) are direct functions of x.
 
  • Like
Likes member 731016
ChiralSuperfields said:
However, why do they not take the derivative of the inner function (if it exists) of f(x) or g(x) using the chain rule?
As already noted, there is no "inner function," but the derivative of h(x) (i.e., h'(x)) requires only the use of the sum rule and constant multiple rules for derivatives. Thus h'(x) = 3f'(x) + 8g'(x). From the given information it's easy to calculate h'(4).

BTW, you don't take "h'(x) of h(x)" similar to what you have in the title. You can find the derivative of h(x) or differentiate h(x).
 
  • Like
Likes member 731016

Similar threads

Replies
2
Views
1K
  • · Replies 5 ·
Replies
5
Views
2K
  • · Replies 10 ·
Replies
10
Views
2K
  • · Replies 3 ·
Replies
3
Views
2K
  • · Replies 8 ·
Replies
8
Views
1K
  • · Replies 4 ·
Replies
4
Views
2K
  • · Replies 7 ·
Replies
7
Views
3K
  • · Replies 5 ·
Replies
5
Views
2K
  • · Replies 3 ·
Replies
3
Views
2K
  • · Replies 2 ·
Replies
2
Views
1K