If you know
(1) how to multiply matrices
(2) the Maclaurin series expansion for e^x, sin(x), cos(x), sinh(x), and cosh(x)
then you can verify the following:
{K1,K2,K3}= \left( \begin{array}{cccc} 0 & \beta_x & 0 & 0 \\ \beta_x & 0 & 0 & 0 \\ 0 & 0 & 0 & 0 \\ 0 & 0 & 0 & 0 \end{array} \right) \left( \begin{array}{cccc} 0 & 0 & \beta_y & 0 \\ 0 & 0 & 0 & 0 \\ \beta_y & 0 & 0 & 0 \\ 0 & 0 & 0 & 0 \end{array} \right) \left( \begin{array}{cccc} 0 & 0 & 0 & \beta_z \\ 0 & 0 & 0 & 0 \\ 0 & 0 & 0 & 0 \\ \beta_z & 0 & 0 & 0 \end{array} \right)
{S1,S2,S3}= \left( \begin{array}{cccc} 0 & 0 & 0 & 0 \\ 0 & 0 & 0 & 0 \\ 0 & 0 & 0 & -\theta_1 \\ 0 & 0 & \theta_1 & 0 \end{array} \right) \left( \begin{array}{cccc} 0 & 0 & 0 & 0 \\ 0 & 0 & 0 & \theta_2 \\ 0 & 0 & 0 & 0 \\ 0 & -\theta_2 & 0 & 0 \end{array} \right) \left( \begin{array}{cccc} 0 & 0 & 0 & 0 \\ 0 & 0 & -\theta_3 & 0 \\ 0 & \theta_3 & 0 & 0 \\ 0 & 0 & 0 & 0 \end{array} \right)
Then e^{K1}, e^{K2}, e^{K3} evaluate to the Lorentz Tranformations; i.e. accelerations in the x, y, z direction. and e^{S1}, e^{S2}, e^{S3} evaluate to rotations in the x, y, z planes.
You notice there is one negative sign in the S1, S2, S3 definitions, but there is no negative sign in the Boost1, Boost2, Boost3 definitions.
As an example note that
<br />
\left (\begin{matrix} 0 & \theta \\ -\theta & 0 \end{matrix} \right ) ^2<br />
=<br />
\left (\begin{matrix} 0 & \theta \\ -\theta & 0 \end{matrix} \right ) \left (\begin{matrix} 0 & \theta \\ -\theta & 0 \end{matrix} \right )=<br />
<br />
\begin{pmatrix} -\theta^2 & 0\\ 0 & -\theta^2 \end{pmatrix}<br />
and
\left (\begin{matrix} 0 & \theta \\ -\theta & 0 \end{matrix} \right ) ^3 = \begin{pmatrix} -\theta^2 & 0\\ 0 & -\theta^2 \end{pmatrix} \left (\begin{matrix} 0 & \theta \\ -\theta & 0 \end{matrix} \right ) = \begin{pmatrix} 0 & -\theta ^3\\ \theta^3 & 0 \end{pmatrix}
Taking e to the power of the matrix
e^\left (\begin{matrix} 0 & \theta \\ -\theta & 0 \end{matrix} \right )
The first seven terms of the Maclaurin series expansion yields:
<br />
\begin{pmatrix} <br />
(1-\frac{\theta^2}{2!}+\frac{\theta^4}{4!}-\frac{\theta^6}{6!} )<br />
& <br />
(\theta - \frac{\theta^3}{3!}+\frac{\theta^5}{5!} )<br />
\\ <br />
( -\theta + \frac{\theta^3}{3!}-\frac{\theta^5}{5!} )<br />
& (1-\frac{\theta^2}{2!}+\frac{\theta^4}{4!}-\frac{\theta^6}{6!} ) <br />
\end{pmatrix}
and you can see this is leading to:
<br />
\begin{pmatrix}<br />
\cos(\theta) & sin(\theta) \\<br />
-\sin(\theta) & cos(\theta)<br />
\end{pmatrix}<br />
This final matrix is
\begin{pmatrix}
\frac{\Delta \vec u_{x'}}{\Delta \vec u_{x}} &
\frac{\Delta \vec u_{x'}}{\Delta \vec u_{y}} \\
\frac{\Delta \vec u_{y'}}{\Delta \vec u_{x}} &
\frac{\Delta \vec u_{y'}}{\Delta \vec u_{y}}
\end{pmatrix}
Which relates the change in the unit vector in the pre-rotation coordinates, to the unit vectors in the post-rotation coordinates.
For instance, if
\vec u_x \overset {def} = <br />
\begin{pmatrix}<br />
1\\ 0<br />
\end{pmatrix}<br />
and the rotation maps that point
\begin{pmatrix}<br />
1\\ 0<br />
\end{pmatrix}\rightarrow \begin{pmatrix}<br />
cos(\theta)\\-sin(\theta) <br />
<br />
\end{pmatrix}
then
\frac{\Delta \vec u_{x'}}{\Delta \vec u_{x}}=cos(\theta)
and
\frac{\Delta \vec u_{y'}}{\Delta \vec u_{x}}=-sin(\theta)
There are several bits and pieces of this that I haven't worked out yet. For instance, why is it that
\begin{pmatrix}<br />
\frac{\Delta \vec u_{x'}}{\Delta \vec u_{x}} & <br />
\frac{\Delta \vec u_{x'}}{\Delta \vec u_{y}} \\<br />
\frac{\Delta \vec u_{y'}}{\Delta \vec u_{x}} & <br />
\frac{\Delta \vec u_{y'}}{\Delta \vec u_{y}}<br />
\end{pmatrix} = e^{S1}
etc. I mean I can see that it is true, but I can't see why it is true. (Edit: More specifically, what would make someone think to take e to the power of a matrix. I guess it wouldn't
have to be any more complicated than somebody saying "hey, I noticed these two things were equal." )
(This discussion extends from
https://www.physicsforums.com/showthread.php?t=430956 and specifically Jackson's
Classical Electrodynamics.)