Why is the Z vector Boson heavier then most quarks?

  • Thread starter Thread starter Chaos' lil bro Order
  • Start date Start date
  • Tags Tags
    Boson Quarks Vector
Chaos' lil bro Order
Messages
682
Reaction score
2
Hey,


If we use the Friedman Equation form to find time(excpected) for a given particle's Rest Mass energy as our input value, does it mean that the most energetic particles were 'born' first and the lighter particles 'born' later on in time in a linear, sequential order?

eg. T quark (174Gev)---->Z Boson(~90GeV)----->W Boson(~80GeV)---->B Quark(5GeV)------>Tau(~1777MeV)-----Proton(~938MeV)----->Electron(0.511MeV)------>etc...

Does the order of their Rest Mass energies mean they were 'born' in that order too?

Thanks, I'm very puzzled about this.
 
Last edited:
Physics news on Phys.org
Nobody knows, You get Z and W from Fermi constant plus the electroweak couplings. The puzzling thing to me is why is the Z, W, and Top quark so much heavier than the other quarks. Besides, there Top quark relates also naturally to Fermi constant in the sense that the Yukawa coupling giving mass to this quark is exactly unity, a misterously casual thing.
 
hold on rivero

Does a particle's rest mass dictate when it appeared in the Universe?

ie. electron and positron production occurred at times before the average photon's kT>1MeV

So does that mean that earlier on in time photons with kT>348GeV (174GeV x 2) were creating Top Quark/ anti-Top Quark pairs? Can we generalize that all particles are created from photons at various stages in the Universe's Energy densities?

I found your last answer useful, but it wasn't completely satisfying.
 
Chaos' lil bro Order said:
Does a particle's rest mass dictate when it appeared in the Universe?

There is a biannual review about cosmology, you can check it and references therein. I am not very conversant in this area. Enjoy.
http://arxiv.org/abs/astro-ph/0601514
 
Toponium is a hadron which is the bound state of a valance top quark and a valance antitop quark. Oversimplified presentations often state that top quarks don't form hadrons, because they decay to bottom quarks extremely rapidly after they are created, leaving no time to form a hadron. And, the vast majority of the time, this is true. But, the lifetime of a top quark is only an average lifetime. Sometimes it decays faster and sometimes it decays slower. In the highly improbable case that...
I'm following this paper by Kitaev on SL(2,R) representations and I'm having a problem in the normalization of the continuous eigenfunctions (eqs. (67)-(70)), which satisfy \langle f_s | f_{s'} \rangle = \int_{0}^{1} \frac{2}{(1-u)^2} f_s(u)^* f_{s'}(u) \, du. \tag{67} The singular contribution of the integral arises at the endpoint u=1 of the integral, and in the limit u \to 1, the function f_s(u) takes on the form f_s(u) \approx a_s (1-u)^{1/2 + i s} + a_s^* (1-u)^{1/2 - i s}. \tag{70}...
Back
Top