Why is this false? - Short Fitch proof using Herbrand logic

  • Thread starter Thread starter AmagicalFishy
  • Start date Start date
  • Tags Tags
    Logic Proof Short
AmagicalFishy
Messages
50
Reaction score
1
Hello, folks.

I'm taking my first formal logic class and some of the things seem contradictory; I know it's because I'm not fully understanding something, but I don't know what I'm not fully understanding—I hope someone can help me. The problem begins:

Problem said:
Let L2 be the language consisting of object constants a, b, a unary function constant f, and unary relation constants p, q.
For each of the following statements, state whether it is true or false under the language L2.

The statement I'm having trouble with is...

{ p(a), p(b), p(f(a)), p(f(b)) }⊢Fitch∀x.p(x)

... which I marked true. I'm able to prove that ∀x.p(x) while using only p(a) as a premise, even. The answer is false, and I'm told "p may not hold for terms like f(f(a)), f(f(b)), and so forth." But how could it not? Why would p(f(f(a))) not hold if ∀x.p(x)?

What I think of as I finish typing this that I'm misunderstanding what ⊢Fitch really means, which is "Prove using the Fitch system and no aspects of Herbrand logic." The only way to prove ∀x.p(x) is by using Universal Introduction and Elimination—which... is not encompassed by the provable operator ⊢Fitch?
 
Physics news on Phys.org
... is it because we can't (yet) explicitly prove the infinite possibilities presented by the infinitely-nesting function constants?
 
AmagicalFishy said:
I'm able to prove that ∀x.p(x) while using only p(a) as a premise, even.
No, you're not.
 
PA.jpg


... ?
Unless you mean I can't prove it within L2, in which case I wouldn't have the slightest clue as to why—it'd be the same thing. Perhaps there's some implication intrinsic in the conclusion that I've yet to learn about.

Could you be... um... helpful when you next respond?
 
Universal Introduction doesn't work that way. Why on Earth would it follow from the fact that, say, P holds for the number 37 that P holds for all x? a and b are constants, not variables.
 
Hi all, I've been a roulette player for more than 10 years (although I took time off here and there) and it's only now that I'm trying to understand the physics of the game. Basically my strategy in roulette is to divide the wheel roughly into two halves (let's call them A and B). My theory is that in roulette there will invariably be variance. In other words, if A comes up 5 times in a row, B will be due to come up soon. However I have been proven wrong many times, and I have seen some...
Namaste & G'day Postulate: A strongly-knit team wins on average over a less knit one Fundamentals: - Two teams face off with 4 players each - A polo team consists of players that each have assigned to them a measure of their ability (called a "Handicap" - 10 is highest, -2 lowest) I attempted to measure close-knitness of a team in terms of standard deviation (SD) of handicaps of the players. Failure: It turns out that, more often than, a team with a higher SD wins. In my language, that...
Back
Top