- 10,419
- 1,591
Apologies in advance if I'm addressing points already raised, I've only skimmed the thread.
Experimentally, time being orthogonal to space is the same as saying that we use Einstein clock synchronization convention, as a way to get "fair" or "isotropic" clock synchronization.
When we make time orthogonal to space, physics work the way we usually expect. Light moves the same in both directions, and so do electron beams with the same energy. It doesn't matter to the physics which way the light or the electron beam is going, it's speed is the same.
If we don't make time orthogonal to space, both the speed of light and the speed of electron beams of a specified energy depends on the direction. This is most obvious for high energy electron beams, as they approach the speed of light as one increases their energy per electron. Thus if the behavior of light is not isotropic, neither is the behavior of other things. See for instance and/or the peer reviewed paper associated with the video. The general topic is known as "isotropy". Sometimes people appear to think isotropy applies only to light, but it applies to other physical phenomenon as well.
If the idea that the speed of identical objects (identical because they have a known energy, or momentum) moving in different directitons is uncomfortable, then one should stick with isotropic coordinates and/or inertial frames, which implies that time must be orthogonal to space.
Experimentally, time being orthogonal to space is the same as saying that we use Einstein clock synchronization convention, as a way to get "fair" or "isotropic" clock synchronization.
When we make time orthogonal to space, physics work the way we usually expect. Light moves the same in both directions, and so do electron beams with the same energy. It doesn't matter to the physics which way the light or the electron beam is going, it's speed is the same.
If we don't make time orthogonal to space, both the speed of light and the speed of electron beams of a specified energy depends on the direction. This is most obvious for high energy electron beams, as they approach the speed of light as one increases their energy per electron. Thus if the behavior of light is not isotropic, neither is the behavior of other things. See for instance and/or the peer reviewed paper associated with the video. The general topic is known as "isotropy". Sometimes people appear to think isotropy applies only to light, but it applies to other physical phenomenon as well.
If the idea that the speed of identical objects (identical because they have a known energy, or momentum) moving in different directitons is uncomfortable, then one should stick with isotropic coordinates and/or inertial frames, which implies that time must be orthogonal to space.