Why is (x) a prime ideal in k[x,y]?

  • Thread starter Thread starter Math Amateur
  • Start date Start date
  • Tags Tags
    Prime
Math Amateur
Gold Member
MHB
Messages
3,920
Reaction score
48
Example (2) on page 682 of Dummit and Foote reads as follows:

------------------------------------------------------------------------

(2) For any field k, the ideal (x) in k[x,y] is primary since it is a prime ideal.

... ... etc

----------------------------------------------------------------------------

Now if (x) is prime then obviously (x) is primary BUT ...

How do we show that (x) is prime in k[x, y]?

Would appreciate some help

Peter
 
Physics news on Phys.org
Use the first isomorphism theorem to show that ##k[X,Y]/(X)## is an integral domain. The right function is the evaluation in ##0##:

k[X,Y]\rightarrow k[Y]:P(X,Y)\rightarrow P(0,Y)
 
  • Like
Likes 1 person
Thanks for the help, r136a1

Just checking and reflecting on the use of the First Isomorphism Theorem

Peter
 
##\textbf{Exercise 10}:## I came across the following solution online: Questions: 1. When the author states in "that ring (not sure if he is referring to ##R## or ##R/\mathfrak{p}##, but I am guessing the later) ##x_n x_{n+1}=0## for all odd $n$ and ##x_{n+1}## is invertible, so that ##x_n=0##" 2. How does ##x_nx_{n+1}=0## implies that ##x_{n+1}## is invertible and ##x_n=0##. I mean if the quotient ring ##R/\mathfrak{p}## is an integral domain, and ##x_{n+1}## is invertible then...
The following are taken from the two sources, 1) from this online page and the book An Introduction to Module Theory by: Ibrahim Assem, Flavio U. Coelho. In the Abelian Categories chapter in the module theory text on page 157, right after presenting IV.2.21 Definition, the authors states "Image and coimage may or may not exist, but if they do, then they are unique up to isomorphism (because so are kernels and cokernels). Also in the reference url page above, the authors present two...
When decomposing a representation ##\rho## of a finite group ##G## into irreducible representations, we can find the number of times the representation contains a particular irrep ##\rho_0## through the character inner product $$ \langle \chi, \chi_0\rangle = \frac{1}{|G|} \sum_{g\in G} \chi(g) \chi_0(g)^*$$ where ##\chi## and ##\chi_0## are the characters of ##\rho## and ##\rho_0##, respectively. Since all group elements in the same conjugacy class have the same characters, this may be...

Similar threads

Replies
3
Views
2K
Replies
13
Views
3K
Replies
3
Views
439
Replies
14
Views
2K
Replies
4
Views
5K
Replies
1
Views
2K
Back
Top