archipatelin
- 25
- 0
Cotton tensor C_{\mu\varkappa\lambda} is define as:
Weyl tensor obey II. Bianchi identity (and all symetries of Rieamann tensor):
Is this correct?
\nabla_{\sigma}W^{\sigma}_{\phantom{M}\mu\varkappa\lambda}=-\frac{n-3}{n-2}C_{\mu\varkappa\lambda}
where W^{\sigma}_{\phantom{M}\mu\varkappa\lambda} is Weyl tensor and n is dimension of space.Weyl tensor obey II. Bianchi identity (and all symetries of Rieamann tensor):
\nabla_{\nu}W^{\sigma}_{\phantom{M}\mu\varkappa\lambda} + \nabla_{\varkappa}W^{\sigma}_{\phantom{M}\mu\lambda\nu}+\nabla_{\lambda}W^{\sigma}_{\phantom{M}\mu\nu\varkappa}=0
and extra it is traceless:W^{\sigma}_{\phantom{M}\mu\sigma\varkappa}=0
For a divergence of Weyl tensor can write:\nabla_{\sigma}W^{\sigma}_{\phantom{M}\mu\varkappa\lambda}=g^{\rho\sigma}\nabla_{\sigma}W_{\rho\mu\varkappa\lambda}=\left<\mbox{II. Bianchi identity}\right>=-g^{\rho\sigma}\left(\nabla_{\varkappa}W_{\rho\mu\lambda\sigma}+\nabla_{\lambda}W_{\rho\mu\sigma\varkappa}\right)=
=\nabla_{\varkappa}W^{\sigma}_{\phantom{M}\mu\sigma\lambda}-\nabla_{\lambda}W^{\sigma}_{\phantom{M}\mu\sigma\varkappa}=0
Becose Weyl tensor is traceless therefor Cotton tensor must be identical zero!=\nabla_{\varkappa}W^{\sigma}_{\phantom{M}\mu\sigma\lambda}-\nabla_{\lambda}W^{\sigma}_{\phantom{M}\mu\sigma\varkappa}=0
Is this correct?