dpackard said:
This is unclear. There is no a priori reason we cannot speak of time as a property that belongs to a particle in the same way you speak of space. In principle, we could define a set a time states that would correspond to the particle existing at each instant of time. You're simply restating the fact that it ISN'T done, but not explaining why.
Suppose that you have defined an Hermitian operator of time with eigenvalues t and eigenvectors | t \rangle. Then there should exist a particle (e.g., electron) state
coinciding with this eigenvector. In such a state the probability of finding the electron at time t is non-zero, while the probability of finding the electron at any other time is zero. This state violates all known conservation laws, in particular the laws of conservation of energy and charge. This is just another reason why the "operator of time" is not a good idea.
dpackard said:
I think I understand what you're trying to say, but you muddy it with the false distinction you made above. It is NOT true that we can measure time without observing some physical system; be it the tiny gear mechanisms turning in a pocket watch or the nuclear decay of an atom, we cannot tell time by ourselves (unless we're counting our heartbeats, but that still counts as observing a system).
Of course clocks (wall clocks, pocket watches, human heart, etc.) are examples of physical systems. They are made of atoms, molecules, etc. However, when they are used as devices for measuring time in physics, they should not be treated as physical systems. For example, their quantum properties (e.g., position-momentum uncertainty) are not interesting for physicists. If the laboratory clock exhibits some quantum uncertainties, then it is simply a bad clock and should be replaced by another one, which ticks at regular predictable intervals. This property of ticking at regular intervals is the only clock property that is important for physics.
So, clocks should not be regarded as physical systems. They should be regarded as parts of the experimental setup. The same is true for other laboratory equipment. For example, each laboratory should have 3 mutually orthogonal measuring rods, which allow us to measure x-y-z positions of particles. These rods should not be regarded as physical systems. They are measuring devices, and their quantum-mechanical theoretical counterpart is the operator of position, rather than any state vector.
Any physical experiment requires the presence of three components:
1. The physical system - the object whose properties are measured. In QM, states of the physical system are described by unit vectors (or densitry operators) in the Hilbert space.
2. Measuring devices (such as x-y-z measuring rods). In QM, these objects are described by Hermitian operators of observables.
3. A clock, whose readings are described by a c-number parameter in QM.
Of course, you may decide to treat your laboratory clock as a physical system and to perform some measurements (of position, velocity, mass, energy, etc.) on this clock. But then you are considering a completely different experimental setup in which the roles of different components have changed. Quantum-mechanically, this setup should be described in a different Hilbert space, and the role of clock should be played by a different device.
Eugene.