biubiu
- 12
- 0
Why is partial derivative with respect to time used in the continuity equation,
<br /> \frac{\partial \rho}{\partial t} = - \nabla \vec{j} <br />
If this equation is really derived from the equation,
<br /> \frac{dq}{dt} = - \int\int \vec{j} \cdot d\vec{a}<br />
Then should it be a total derivative with respect to time?
<br /> \frac{\partial \rho}{\partial t} = - \nabla \vec{j} <br />
If this equation is really derived from the equation,
<br /> \frac{dq}{dt} = - \int\int \vec{j} \cdot d\vec{a}<br />
Then should it be a total derivative with respect to time?