A Why the James Webb Space Telescope needs propellant

AI Thread Summary
Orbits around Lagrange points, such as L2, are inherently unstable and require periodic trajectory adjustments to maintain. The James Webb Space Telescope (JWST) is not scheduled for refueling, meaning it will drift away from L2 once its propellant is depleted. Simulations indicate that without propulsion, the JWST could end up in a wide Earth orbit, potentially becoming unsynchronized with the Moon's orbit. The influence of the Sun and other planets complicates these orbital patterns. Ultimately, the JWST's fate after losing propellant remains uncertain, but it may settle into a resonant orbit similar to that of Jupiter's moons.
James Demers
Messages
75
Reaction score
43
TL;DR Summary
The orbit of the JWST around its Lagrange point is unstable, and has to be tweaked if the telescope is to remain on station. What happens when the propellant runs out?
Orbits around the Lagrange point are not stable, and you need to tweak your trajectory every now and then to remain in that orbit. Simulations of a non-accelerated body give spectacularly weird results:

When the propellant runs out, is this what the JWST will do?
 
Physics news on Phys.org
I assume this includes only Earth's and Moon's gravity. The Sun and other planets will probably mess those nice periodic patterns up.
 
It is not scheduled for refuel, so when its propellant runs out, it will drift out of the L2 point and find its own orbit.

Someone has run a simulation:
https://space.stackexchange.com/que...falls-off-the-l2-or-l1-point-where-will-it-go

Their conclusion, which I cannot vouch for, suggests that it may end up in a wide Earth orbit, beyond the Moon (IOW, still orbiting Earth but no longer synced to the Moon's revolution). I'm just guessing here but I imagine it might end up in a resonant orbit with the Moon (like Jupiter's Galilean satellites)
 
Last edited:
Thread 'Question about pressure of a liquid'
I am looking at pressure in liquids and I am testing my idea. The vertical tube is 100m, the contraption is filled with water. The vertical tube is very thin(maybe 1mm^2 cross section). The area of the base is ~100m^2. Will he top half be launched in the air if suddenly it cracked?- assuming its light enough. I want to test my idea that if I had a thin long ruber tube that I lifted up, then the pressure at "red lines" will be high and that the $force = pressure * area$ would be massive...
I feel it should be solvable we just need to find a perfect pattern, and there will be a general pattern since the forces acting are based on a single function, so..... you can't actually say it is unsolvable right? Cause imaging 3 bodies actually existed somwhere in this universe then nature isn't gonna wait till we predict it! And yea I have checked in many places that tiny changes cause large changes so it becomes chaos........ but still I just can't accept that it is impossible to solve...
Back
Top