- 24,488
- 15,057
That's again very easy. Measuring something means to compare the measured quantity with a unit which is defined by a real-world measuring procedure (or more precistely an equivalence class of measurement procedures; e.g., to measure the width of my office I can either use a simple yardstick or nowadays a laser rangefinder, but both measurements define the same quantity "length" of course).stevendaryl said:I'm asking: What does it mean to measure something? Informally, I measured some property if I performed an action so that afterward, I know its value. That way of phrasing it sounds very solipsistic. Must there be a person around in order for quantum probabilities to be meaningful?
An alternative is to say that system A measures a property of system B if through interacting, the state of system A becomes correlated with that of system B and the alternative values of the property are macroscopically distinguishable. But that way of understanding it makes a macroscopic/microscopic distinction, which you claim not to be making.
Of course, on my opinion the probabilities of quantum theory do not need any human being to take note about the outcome of the measurement. I thought that's behind your insistence on the claim that QT necessarily implies that the universal physical laws do not hold for measurement devices.
Of coarse, I make this macroscopic-microscopic distinction, but I don't claim that there is a fundamental quantum-classical cut. The classical behavior of macroscopic objects, needed to make a measurement (this is one of the few things I think Bohr in fact got right), is however derivable from standard quantum theory in the minimal interpretation. It's based on using only averaged macroscopic observables of the macroscopic system, which are accurate enough to describe its behavior.
For measurement devices that's not different. Of course it has to interact with the measured object and gets entangled with this object in a way that a macroscopic pointer reading allows to uniquely read off the value of the measured observable.