maxverywell
- 197
- 2
With the Levi-Civita connection, the Killing's equation is:
\xi_{a;b}+\xi_{b;a}=\xi_{a,b}+\xi_{b,a}-2{\Gamma^{c}}_{ab}\xi_{c}=0
I can't understand why there is a minus sign in front of the Christoffel symbols.
We have that:
\xi_{a;b}=\xi_{a,b}+{\Gamma^{c}}_{ab}\xi_{c}
\xi_{b;a}=\xi_{b,a}+{\Gamma^{c}}_{ba}\xi_{c}
and because of {\Gamma^{c}}_{ab}={\Gamma^{c}}_{ba}, it should be
\xi_{a;b}+\xi_{b;a}=\xi_{a,b}+\xi_{b,a}+2{\Gamma^{c}}_{ab}\xi_{c}=0
and not with a minus sign.
\xi_{a;b}+\xi_{b;a}=\xi_{a,b}+\xi_{b,a}-2{\Gamma^{c}}_{ab}\xi_{c}=0
I can't understand why there is a minus sign in front of the Christoffel symbols.
We have that:
\xi_{a;b}=\xi_{a,b}+{\Gamma^{c}}_{ab}\xi_{c}
\xi_{b;a}=\xi_{b,a}+{\Gamma^{c}}_{ba}\xi_{c}
and because of {\Gamma^{c}}_{ab}={\Gamma^{c}}_{ba}, it should be
\xi_{a;b}+\xi_{b;a}=\xi_{a,b}+\xi_{b,a}+2{\Gamma^{c}}_{ab}\xi_{c}=0
and not with a minus sign.