Why two given equations cannot both be true (fermat's for n=3)

  • Thread starter Thread starter drd0013
  • Start date Start date
drd0013
Messages
2
Reaction score
0
Okay, so I'm trying to figure something out.
Why can (x+y)=integer^3 not be true while
(x^2-x*y+y^2)=integer^3 is true?
where x and y are also integers. The integer to the right is just an undefined integer.
I'm trying to prove Fermat's last theorem x^n+y^n=z^n for n=3.
I was able to define two factors of x^2+y^2 as:
(x+y) and (x*y+(x-y)^2)) which reduces to (x^2-x*y+y^2).
Also, z^3 must be the product of cubed integers. So, (x+y) must itself be a cubed integer as well as (x^2-x*y+y^2) in order for x^3+y^3 to be = to z^3. (Which we know it can't). However, I don't know enough maths to prove that (x+y) cannot be equal to a cubed integer while (x^2-x*y+y^2) is.

Also, is this proof a novel one? I was just doing it for garbages and giggles.
Thanks to any who may be able to help
 
Mathematics news on Phys.org
(x+y)*(x^2 -x*y +y^2) = z^3
the problem is not that x+y can't be a cubed value, it can, or that x^2 -x*y +y^2 can't be a cubed value, it can. it's proving that there is no case where both are cubed values for the same x,y.

let's take an example. 10^3 = 1000.
10^3 = 2^3 *5^3
so ether x+y = 8, or x+y = 125.
let;s assume the smaller one. which means x^2 -x*y +y^2 needs to equal 125.
x = 3 y= 5
3^2 - 3*5 +5^2 = 9 -15 +25 = 19; no where close to 125.
 
Last edited:
Yeah, I'm just not sure how (if it can be) to go about showing that. I'm trying to prove that the first and second terms can't both be equal to cubed integers at the same time. But I am not sure how to set up or solve a proof of that. I'd assume modus tolens of some kind but don't really know
 
Last edited:
Insights auto threads is broken atm, so I'm manually creating these for new Insight articles. In Dirac’s Principles of Quantum Mechanics published in 1930 he introduced a “convenient notation” he referred to as a “delta function” which he treated as a continuum analog to the discrete Kronecker delta. The Kronecker delta is simply the indexed components of the identity operator in matrix algebra Source: https://www.physicsforums.com/insights/what-exactly-is-diracs-delta-function/ by...
Fermat's Last Theorem has long been one of the most famous mathematical problems, and is now one of the most famous theorems. It simply states that the equation $$ a^n+b^n=c^n $$ has no solutions with positive integers if ##n>2.## It was named after Pierre de Fermat (1607-1665). The problem itself stems from the book Arithmetica by Diophantus of Alexandria. It gained popularity because Fermat noted in his copy "Cubum autem in duos cubos, aut quadratoquadratum in duos quadratoquadratos, et...
I'm interested to know whether the equation $$1 = 2 - \frac{1}{2 - \frac{1}{2 - \cdots}}$$ is true or not. It can be shown easily that if the continued fraction converges, it cannot converge to anything else than 1. It seems that if the continued fraction converges, the convergence is very slow. The apparent slowness of the convergence makes it difficult to estimate the presence of true convergence numerically. At the moment I don't know whether this converges or not.

Similar threads

Replies
15
Views
2K
Replies
10
Views
2K
Replies
2
Views
1K
2
Replies
78
Views
6K
Replies
6
Views
1K
Replies
5
Views
2K
Replies
13
Views
2K
Back
Top