ndung200790
- 519
- 0
Please teach me this:
The linear sigma model L(Lagrangian)=\frac{1}{2}(\delta_{\mu}\Phi^{i})^{2} + \frac{1}{2}\mu^{2}(\Phi^{i})^{2} -
\frac{\lambda}{4}((\Phi^{i})^{2})^{2}.
The nonlinear sigma model:
L=f_{ij}({\Phi^{i}})\delta_{\mu}
\Phi^{i}\delta^{\mu}\Phi{j}.
After put condition O(N) symmetry,we have Lagrangian(because after the putting f=constant):L=\frac{1}{2g^{2}}/\delta_{\mu}n/^{2}.
.Then the nonlinear model is a special case of the linear sigma model.So I do not understand why we call it the ''nonlinear'' model?
The linear sigma model L(Lagrangian)=\frac{1}{2}(\delta_{\mu}\Phi^{i})^{2} + \frac{1}{2}\mu^{2}(\Phi^{i})^{2} -
\frac{\lambda}{4}((\Phi^{i})^{2})^{2}.
The nonlinear sigma model:
L=f_{ij}({\Phi^{i}})\delta_{\mu}
\Phi^{i}\delta^{\mu}\Phi{j}.
After put condition O(N) symmetry,we have Lagrangian(because after the putting f=constant):L=\frac{1}{2g^{2}}/\delta_{\mu}n/^{2}.
.Then the nonlinear model is a special case of the linear sigma model.So I do not understand why we call it the ''nonlinear'' model?