chinglu1998
- 182
- 0
JesseM said:No, because the LT doesn't say anything about being restricted to events which are all on the same "slice" of a light cone, you can transform a set of events that all happened at different times in your frame.
Sure you are correct. Except, we were considering the light sphere, remember?
If you pick events on the light cone that all happened at the same time in the frame you label "stationary", then their positions form a sphere. If you pick a bunch of events that happened at different times in this frame (and I'm not talking about doing a LT, I'm saying you're free to pick as your initial data a set of events which are non-simultaneous in whatever frame you start out with) then their positions may form some other shape like an ellipsoid. If you pick all events on the worldlines of the light beams at all possible times in this frame, they form a 4D cone.
I agree.
Similarly, if your initial set of events was such that when you transform into the "moving frame", you get a bunch of events that are simultaneous in the moving frame, then their positions form a sphere. If your events in the moving frame are non-simultaneous, then they may form some other shape like an ellipsoid. And if you are looking at all events on the worldlines of the light beam in the moving frame, they form a 4D cone. So, I still can't make any sense of your distinction between "Euclidean space" in the stationary frame and "Minkowski space" in the moving one, still seems like a totally incoherent distinction.
No, I have an equation from the context of the "stationary frame" frame such that for all light beams that strike this object in the stationary frame, the LT calculates the same t'. It is not a sphere BTW. Do you have this math?
I have no idea what you mean by "sees a sphere". If you think of yourself as an actual physical observer at rest in some frame (as opposed to adopting the omniscient perspective of someone reading a problem in a textbook), then you understand that you can't actually visually "see" a set of simultaneous events in your frame at a single moment, right? Since you are at different distances from different points in space, what you see visually at a single moment will be light from a bunch of events at different times in your frame. Statements about what was happening at a single t-coordinate can only be made in retrospect, like if in 2010 I receive a signal from an event E1 10 light-years away in my frame, and in 2020 I receive a signal from an event E2 20 light-years away in my frame, and I conclude retroactively that they both happened simultaneously at the t-coordinate of 2000 in my frame. So the "light sphere" is every bit as much of a retroactive reconstruction as the "light cone", both involve charting the coordinates of a bunch of events that I didn't become aware of until various later times.
Calculates a sphere.
"Stationary" is meaningless unless understood to mean "stationary relative to" some object or frame. Certainly an observer (or any other object) is stationary relative to their own frame, but moving relative to other objects and frames.
I do not know how to answer this. Let's ask you a question. Assume you are in a rocket in space without acceleration. You want to use SR from your view. What are you stationary wrt?
In their own frame yes, but the observer is perfectly capable of understanding that they would be seen as "moving" in other frames, unless they are an idiot who doesn't understand the LT.
Where can I find this in the axioms of SR? This is a math theorynot a human theory.