Work done during quasi-static, isothermal expansion from P_i to P_f

Click For Summary

Homework Help Overview

The discussion revolves around the calculation of work done during a quasi-static, isothermal expansion of an ideal gas, specifically transitioning from an initial pressure \( P_i \) to a final pressure \( P_f \). Participants are examining the mathematical derivation and application of the work formula in this thermodynamic context.

Discussion Character

  • Mathematical reasoning, Assumption checking, Conceptual clarification

Approaches and Questions Raised

  • Participants explore the derivation of the work done using integrals and the ideal gas law. There are inquiries about the source of specific equations, particularly regarding the equation of state for ideal gases. Some participants suggest alternative methods for deriving the work expression.

Discussion Status

The discussion is ongoing, with participants providing insights and clarifications on the derivation process. There is a focus on ensuring correct application of temperature conversions and addressing potential typographical errors in the equations presented. No consensus has been reached regarding the correctness of the initial calculations.

Contextual Notes

Participants note the importance of converting temperature to Kelvin and question the accuracy of the equations used in the derivation. There is mention of a possible typo in the equation of state for ideal gases that may affect the interpretation of the problem.

zenterix
Messages
774
Reaction score
84
Homework Statement
(a) Show that the work done by an ideal gas during the quasi-static, isothermal expansion from an initial pressure ##P_i## to a final pressure ##P_f## is given by

$$W=nRT\ln\frac{P_f}{P_i}$$

(b) Calculate the work done when the pressure of 1 mol of an ideal gas is decreased quasi-statically from 20 to 1 atm, the temperature remaining constant at ##20^{\circ} C## (##R=8.31 J/mol\cdot deg##).
Relevant Equations
##W=-\int_{V_i}^{V_f} PdV##
I am posting this question after I thought I had easily solved the problem, but then when I checked the back of the book I saw that I was incorrect.

Here is what I did.

(a)

$$W=-\int_{V_i}^{V_f} PdV\tag{1}$$

$$V=V(P,T)-\frac{nRT}{P}\tag{2}$$

$$dV=\left ( \frac{\partial V}{\partial P}\right )_T dP+\left ( \frac{\partial V}{\partial T} \right )_P dT\tag{3}$$

$$=\frac{-nRT}{P^2}dP\tag{4}$$

Now we plug (4) into (1)

$$W=\int_{P_i}^{P_f} \frac{nRT}{P}dP=nRT\ln{\frac{P_f}{P_i}}\tag{5}$$

(b)

At this point I simply plugged the values into (5)

$$W=1\text{mol}\cdot 8.31 \mathrm{\frac{J}{mol ^\circ C}}\cdot 20^{\circ} \text{C}\cdot \ln{\frac{1\text{atm}}{20\text{atm}}}\tag{6}$$

$$=-7294\text{J}\tag{7}$$

The book answer says ##-3.17\times 10^3## J.
 
Physics news on Phys.org
zenterix said:
(b)

At this point I simply plugged the values into (5)

$$W=1\text{mol}\cdot 8.31 \mathrm{\frac{J}{mol ^\circ C}}\cdot 20^{\circ} \text{C}\cdot \ln{\frac{1\text{atm}}{20\text{atm}}}\tag{6}$$

$$=-7294\text{J}\tag{7}$$

The book answer says ##-3.17\times 10^3## J.
Be careful: indicate that you converted the 20 °C to kelvin. Otherwise, I get the same answer as you.
 
  • Like
Likes   Reactions: zenterix
zenterix said:
$$W=-\int_{V_i}^{V_f} PdV\tag{1}$$

$$V=V(P,T)-\frac{nRT}{P}\tag{2}$$
Where did you get Eqn. 2 from?

Incidentally, you could have done the initial derivation differently by using the product rule for differentiation: $$PdV=d(PV)-VdP$$At constant temperature, d(PV)=nRdT=0, so, at constant temperature, $$PdV=-VdP=-\frac{nRT}{P}dp$$
 
  • Like
Likes   Reactions: zenterix and MatinSAR
DrClaude said:
Be careful: indicate that you converted the 20 °C to kelvin. Otherwise, I get the same answer as you.
Indeed, I did use Kelvin.
 
Chestermiller said:
Where did you get Eqn. 2 from?

Incidentally, you could have done the initial derivation differently by using the product rule for differentiation: $$PdV=d(PV)-VdP$$At constant temperature, d(PV)=nRdT=0, so, at constant temperature, $$PdV=-VdP=-\frac{nRT}{P}dp$$
Equation 2 comes from the equation of state for ideal gases. I think you may be asking because of the typo I have in that equation.

It should be

$$V=V(P,T)=\frac{nRT}{P}$$

I accidentally had a minus sign in place of the second equals sign.
 
  • Like
Likes   Reactions: Chestermiller

Similar threads

Replies
12
Views
2K
  • · Replies 27 ·
Replies
27
Views
1K
  • · Replies 1 ·
Replies
1
Views
2K
Replies
4
Views
2K
Replies
19
Views
2K
Replies
1
Views
2K
  • · Replies 4 ·
Replies
4
Views
1K
  • · Replies 3 ·
Replies
3
Views
1K
  • · Replies 1 ·
Replies
1
Views
2K
  • · Replies 1 ·
Replies
1
Views
3K