Work done during quasi-static, isothermal expansion from P_i to P_f

AI Thread Summary
The discussion revolves around the calculation of work done during a quasi-static, isothermal expansion from initial pressure P_i to final pressure P_f. The original calculation used the integral of pressure with respect to volume, leading to a work expression of W=nRT ln(P_f/P_i). However, the calculated value of -7294 J differs significantly from the book's answer of -3.17 x 10^3 J, prompting a review of the conversion of temperature to Kelvin. A participant points out a typo in the equation for volume, clarifying that the correct equation should be V=nRT/P, not V=-nRT/P. The conversation emphasizes the importance of careful unit conversion and correct application of the ideal gas law.
zenterix
Messages
774
Reaction score
84
Homework Statement
(a) Show that the work done by an ideal gas during the quasi-static, isothermal expansion from an initial pressure ##P_i## to a final pressure ##P_f## is given by

$$W=nRT\ln\frac{P_f}{P_i}$$

(b) Calculate the work done when the pressure of 1 mol of an ideal gas is decreased quasi-statically from 20 to 1 atm, the temperature remaining constant at ##20^{\circ} C## (##R=8.31 J/mol\cdot deg##).
Relevant Equations
##W=-\int_{V_i}^{V_f} PdV##
I am posting this question after I thought I had easily solved the problem, but then when I checked the back of the book I saw that I was incorrect.

Here is what I did.

(a)

$$W=-\int_{V_i}^{V_f} PdV\tag{1}$$

$$V=V(P,T)-\frac{nRT}{P}\tag{2}$$

$$dV=\left ( \frac{\partial V}{\partial P}\right )_T dP+\left ( \frac{\partial V}{\partial T} \right )_P dT\tag{3}$$

$$=\frac{-nRT}{P^2}dP\tag{4}$$

Now we plug (4) into (1)

$$W=\int_{P_i}^{P_f} \frac{nRT}{P}dP=nRT\ln{\frac{P_f}{P_i}}\tag{5}$$

(b)

At this point I simply plugged the values into (5)

$$W=1\text{mol}\cdot 8.31 \mathrm{\frac{J}{mol ^\circ C}}\cdot 20^{\circ} \text{C}\cdot \ln{\frac{1\text{atm}}{20\text{atm}}}\tag{6}$$

$$=-7294\text{J}\tag{7}$$

The book answer says ##-3.17\times 10^3## J.
 
Physics news on Phys.org
zenterix said:
(b)

At this point I simply plugged the values into (5)

$$W=1\text{mol}\cdot 8.31 \mathrm{\frac{J}{mol ^\circ C}}\cdot 20^{\circ} \text{C}\cdot \ln{\frac{1\text{atm}}{20\text{atm}}}\tag{6}$$

$$=-7294\text{J}\tag{7}$$

The book answer says ##-3.17\times 10^3## J.
Be careful: indicate that you converted the 20 °C to kelvin. Otherwise, I get the same answer as you.
 
zenterix said:
$$W=-\int_{V_i}^{V_f} PdV\tag{1}$$

$$V=V(P,T)-\frac{nRT}{P}\tag{2}$$
Where did you get Eqn. 2 from?

Incidentally, you could have done the initial derivation differently by using the product rule for differentiation: $$PdV=d(PV)-VdP$$At constant temperature, d(PV)=nRdT=0, so, at constant temperature, $$PdV=-VdP=-\frac{nRT}{P}dp$$
 
  • Like
Likes zenterix and MatinSAR
DrClaude said:
Be careful: indicate that you converted the 20 °C to kelvin. Otherwise, I get the same answer as you.
Indeed, I did use Kelvin.
 
Chestermiller said:
Where did you get Eqn. 2 from?

Incidentally, you could have done the initial derivation differently by using the product rule for differentiation: $$PdV=d(PV)-VdP$$At constant temperature, d(PV)=nRdT=0, so, at constant temperature, $$PdV=-VdP=-\frac{nRT}{P}dp$$
Equation 2 comes from the equation of state for ideal gases. I think you may be asking because of the typo I have in that equation.

It should be

$$V=V(P,T)=\frac{nRT}{P}$$

I accidentally had a minus sign in place of the second equals sign.
 
  • Like
Likes Chestermiller
Thread 'Minimum mass of a block'
Here we know that if block B is going to move up or just be at the verge of moving up ##Mg \sin \theta ## will act downwards and maximum static friction will act downwards ## \mu Mg \cos \theta ## Now what im confused by is how will we know " how quickly" block B reaches its maximum static friction value without any numbers, the suggested solution says that when block A is at its maximum extension, then block B will start to move up but with a certain set of values couldn't block A reach...
TL;DR Summary: Find Electric field due to charges between 2 parallel infinite planes using Gauss law at any point Here's the diagram. We have a uniform p (rho) density of charges between 2 infinite planes in the cartesian coordinates system. I used a cube of thickness a that spans from z=-a/2 to z=a/2 as a Gaussian surface, each side of the cube has area A. I know that the field depends only on z since there is translational invariance in x and y directions because the planes are...
Thread 'Calculation of Tensile Forces in Piston-Type Water-Lifting Devices at Elevated Locations'
Figure 1 Overall Structure Diagram Figure 2: Top view of the piston when it is cylindrical A circular opening is created at a height of 5 meters above the water surface. Inside this opening is a sleeve-type piston with a cross-sectional area of 1 square meter. The piston is pulled to the right at a constant speed. The pulling force is(Figure 2): F = ρshg = 1000 × 1 × 5 × 10 = 50,000 N. Figure 3: Modifying the structure to incorporate a fixed internal piston When I modify the piston...
Back
Top