Work Done in Changing Shape of Current Carrying Loop

Click For Summary
SUMMARY

This discussion focuses on calculating the work done in transforming a square current-carrying loop into a circular current-carrying loop while maintaining the same angular orientation in an external magnetic field. The potential energy (P) is defined as the dot product of the magnetic moment (M) and the magnetic field (B), expressed as P = M·B. The participants derive the change in potential energy (ΔPE) for both shapes and conclude that the work done (W) is equal to the change in potential energy (ΔW = ΔPE). The integral approach to compute work involves mapping elemental lengths from the square to the circle, though some integrals present computational challenges.

PREREQUISITES
  • Understanding of magnetic moments and their relation to current-carrying loops.
  • Familiarity with potential energy in magnetic fields, specifically P = M·B.
  • Knowledge of torque and its integration in the context of magnetic fields.
  • Basic calculus skills for evaluating integrals involving trigonometric functions.
NEXT STEPS
  • Study the derivation of potential energy in magnetic fields, focusing on the formula P = M·B.
  • Learn about the relationship between magnetic moment and area for current-carrying loops.
  • Explore advanced integration techniques for solving complex integrals involving trigonometric functions.
  • Investigate the implications of changing magnetic moments in varying magnetic fields.
USEFUL FOR

Physicists, electrical engineers, and students studying electromagnetism who are interested in the dynamics of current-carrying loops in magnetic fields.

Anmoldeep
Messages
15
Reaction score
2
How would you go about calculating the work done in morphing a square current-carrying loop into a circular current-carrying loop, without change in length while maintaining the same angular orientation with an external magnetic field.

My book suggests defining P(potential energy) = M.B (dot product of magnetic moment and magnetic field)

I am familiar with the above formula for a varying angle between M and B but not for a varying magnetic moment. If it's true please help me in deriving it.
Suppose for the question
1.) Edge if Square loop is 'a'
2.) Current = I
3.) Magnetic field (Uniform and perpendicular to the plane of the loop)
 
Physics news on Phys.org
The relevant factor is the ratio ##4/\pi## of the areas :smile:
 
ergospherical said:
The relevant factor is the ratio ##4/\pi## of the areas :smile:
Thanks for that, although I wanted a deeper explanation as to why potential energy is still defined by the same way, P=M.B is found by integrating Torque =MxB w.r.t (theta), here though theta remains the same and M is changing, I have found an integral by mapping every elemental length on the square back to the circle and calculating the work done for all such elemental length's but the integral is not computable, it has truncated trigonometric terms like cos(pi/4tan(theta)-theta) that too under the square root along with other terms.
 
Anmoldeep said:
Thanks for that, although I wanted a deeper explanation as to why potential energy is still defined by the same way, P=M.B is found by integrating Torque =MxB w.r.t (theta), here though theta remains the same and M is changing, I have found an integral by mapping every elemental length on the square back to the circle and calculating the work done for all such elemental length's but the integral is not computable, it has truncated trigonometric terms like cos(pi/4tan(theta)-theta) that too under the square root along with other terms.
I think I found the solution, the textbook directly suggested the use of PE=-M.B, however we know that
Del(PE)=M.B(1-cos(theta))=PEtheta - PE0
consider two separate loops of magnetic moment M1 and M2 (square and circle respectively)
Del(PE1)=M1.B(1-cos(theta))=PEtheta - PE0
and
Del(PE2)=M2.B(1-cos(theta))=PEtheta - PE0

choose theta = pi/2 and the PEtheta term will cancel out, subtract the remaining expressions and you get the required answer as the difference in potential energies of the loops when angle between M and B is 0
 
Last edited:
Anmoldeep said:
Thanks for that, although I wanted a deeper explanation as to why potential energy is still defined by the same way, P=M.B is found by integrating Torque =MxB w.r.t (theta)
Recall that the moment ##\mathbf{K}## acting on the magnetic dipole is ##\mathbf{K} = \mathbf{m} \times \mathbf{B}##. If the dipole is rotated to angle ##\theta## (e.g. about an axis perpendicular to the plane containing ##\mathbf{m}## and ##\mathbf{B}##) then the work done by the magnetic field is \begin{align*}
w(\theta) = \int^{\theta} \mathbf{K} \cdot d\boldsymbol{\varphi} = -\int^{\theta} mB \sin{\varphi} d\varphi = mB \cos{\varphi} \bigg{|}^{\theta} = mB\cos{\theta} + c_0
\end{align*}##c_0## can be set arbitrarily. The potential energy is simply ##u = -w = -\mathbf{m} \cdot \mathbf{B}##.
 
  • Like
Likes   Reactions: Anmoldeep
Supplementary to the above posts, maybe combining them (?):

Ratio of mag moment = ratio of areas for same current.
Then compute ## \Delta PE ## as I think @ergospherical describes.
Then ## \Delta W = \Delta P.E. ##, W = work.
 

Similar threads

  • · Replies 6 ·
Replies
6
Views
2K
  • · Replies 8 ·
Replies
8
Views
1K
  • · Replies 2 ·
Replies
2
Views
2K
  • · Replies 15 ·
Replies
15
Views
5K
Replies
4
Views
1K
  • · Replies 2 ·
Replies
2
Views
2K
  • · Replies 4 ·
Replies
4
Views
3K
  • · Replies 13 ·
Replies
13
Views
2K
  • · Replies 4 ·
Replies
4
Views
10K
  • · Replies 3 ·
Replies
3
Views
2K