MHB Xojessilynox's question at Yahoo Answers involving integration

  • Thread starter Thread starter Chris L T521
  • Start date Start date
  • Tags Tags
    Integration
Chris L T521
Gold Member
MHB
Messages
913
Reaction score
0
Here is the question.

CALC 2: evaluate the integral x^3+8x^2+26x-3 / (x^2+8x+17)^2? said:
I can't find the answer to this question. I keep getting this wrong too just like all the other problems. I need help please and thank you!

Here is a link to the question:

CALC 2: evaluate the integral x^3+8x^2+26x-3 / (x^2+8x+17)^2? - Yahoo! Answers

I have posted a link there to this topic so the OP can find my response.
 
Mathematics news on Phys.org
Re: xojessilynox's question at yahoo answers involving integration

Hi xojessilynox,

To evaluate $\displaystyle\int \frac{x^3+8x^2+26x-3}{(x^2+8x+17)^2}\,dx$, we proceed first by partial fractions.

The denominator contains a power of an irreducible quadratic, so our partial fraction decomposition takes on the form
\[\frac{x^3+8x^2+26x-3}{(x^2+8x+17)^2} = \frac{Ax+B}{x^2+8x+17} + \frac{Cx+D}{(x^2+8x+17)^2}.\]

Multiplying both sides by the common denominator gives us
\[\begin{aligned} x^3+8x^2+26x-3 &= (Ax+B)(x^2+8x+17)+Cx+D\\ &= Ax^3+(8A+B)x^2+(17A+8B+C)x+17B+D. \end{aligned}\]
Comparing coefficients gives rise to the following system of equations:
\[\left\{\begin{aligned} A &= 1\\ 8A+B &= 8\\ 17A+8B+C &= 26\\ 17B+D &= -3\end{aligned}\right.\]
Which has the solutions $A=1$, $B=0$, $C=9$ and $D=-3$ (Verify). Therefore,
\[\frac{x^3+8x^2+26x-3}{(x^2+8x+17)^2} = \frac{x}{x^2+8x+17} + \frac{9x-3}{(x^2+8x+17)^2}\]
and thus
\[\begin{aligned} \int\frac{x^3+8x^2+26x-3}{(x^2+8x+17)^2}\,dx &= \int\frac{x}{x^2+8x+17}\,dx + \int\frac{9x-3}{(x^2+8x+17)^2}\,dx\\ &= \int\frac{x}{(x+4)^2+1}\,dx + 3\int\frac{3x-1}{((x+4)^2+1)^2}\,dx\\ &= \int\frac{x+4}{(x+4)^2+1}\,dx - \int\frac{4}{(x+4)^2+1}\,dx +3\int\frac{3x-1}{((x+4)^2+1)^2}\,dx. \end{aligned}\]
Let's focus on each of these three integrals one at a time.


Consider
\[\int\frac{x+4}{(x+4)^2+1}\,dx.\]
Making the substitution $u=(x+4)^2+1\implies \,du=2(x+4)\,dx \implies \frac{1}{2}\,du=(x+4)\,dx$, we see that
\[\begin{aligned} \int\frac{x+4}{(x+4)^2+1}\,dx \xrightarrow{u=(x+4)^2+1}{} \frac{1}{2}\int\frac{\,du}{u} &= \frac{1}{2}\ln|u|+C\\ &=\frac{1}{2}\ln|(x+4)^2+1|+C \\ &= \frac{1}{2}\ln(x^2+8x+17)+C.\end{aligned}\]
Next, let us consider
\[\int\frac{4}{(x+4)^2+1}\,dx\]
Making the substitution $u=x+4\implies \,du=\,dx$, we see that
\[\begin{aligned} \int\frac{4}{(x+4)^2+1}\,dx \xrightarrow{u=x+4}{} \int\frac{4}{u^2+1}\,du &= 4\arctan(u)+C\\ &= 4\arctan(x+4)+C\end{aligned}\]
Finally, we consider
\[\int\frac{3x-1}{((x+4)^2+1)^2}\,dx\]
To compute this guy, we use the trig substitution $x+4=\tan\vartheta \implies x=\tan\vartheta-4$. Thus, $\,dx=\sec^2\vartheta\,d\vartheta$ and we now see that
\[\begin{aligned} \int\frac{3x-1}{((x+4)^2+1)^2}\,dx \xrightarrow{x+4=\tan\vartheta}{} \int\frac{3(\tan\vartheta -4)-1}{(\tan^2\vartheta+1)^2} \sec^2\vartheta\,d\vartheta &= \int\frac{3\tan\vartheta - 13}{(\sec^2\vartheta)^2} \sec^2\vartheta\,d\vartheta\\ &= \int\frac{3\tan\vartheta -13}{\sec^2\vartheta} \,d\vartheta\\ &= \int (3\tan\vartheta\cos^2\vartheta - 13\cos^2\vartheta) \,d\vartheta\\ &= \int (3\sin\vartheta\cos\vartheta -13\cos^2\vartheta) \,d\vartheta\\ &=\int (\tfrac{3}{2}\sin(2\vartheta)- \tfrac{13}{2}(1+\cos(2\vartheta))) \,d\vartheta\\ &= \int (\tfrac{3}{2}\sin(2\vartheta) -\tfrac{13}{2} -\tfrac{13}{2}\cos(2\vartheta)) \,d\vartheta\\ &= -\tfrac{3}{4}\cos(2\vartheta) -\tfrac{13}{2}\vartheta -\tfrac{13}{4}\sin(2\theta)+C\\ &= -\tfrac{3}{4}(2\cos^2\vartheta - 1) - \tfrac{13}{2}\vartheta -\tfrac{13}{4}(2\sin\vartheta\cos\vartheta) + C\\ &=-\tfrac{3}{2}\cos^2\vartheta +\tfrac{3}{4} -\tfrac{13}{2}\vartheta -\tfrac{13}{2}\sin\vartheta\cos\vartheta+C\\ &= -\tfrac{3}{2}\cos^2\vartheta -\tfrac{13}{2}\vartheta -\tfrac{13}{2}\sin\vartheta\cos\vartheta + C.\end{aligned}\]

Note that in the last line above, $\tfrac{3}{4}$ is a constant, so it can get absorbed in the integration constant $C$.

Now, to convert everything back into terms of $x$, we recall that $x+4=\tan\vartheta$. Constructing a right triangle with the side opposite of $\vartheta$ having length $x+4$ and adjacent side with length $1$, it follows that $\sin\vartheta=\dfrac{x+4}{\sqrt{(x+4)^2+1}} = \dfrac{x+4}{\sqrt{x^2+8x+17}}$, $\cos\vartheta=\dfrac{1}{\sqrt{x^2+8x+17}}$ and $\vartheta=\arctan(x+4)$. Therefore,
\[\begin{aligned} -\tfrac{3}{2}\cos^2\vartheta -\tfrac{13}{2}\vartheta- \tfrac{13}{2}\sin\vartheta\cos\vartheta +C &= -\tfrac{3}{2} \left(\frac{1}{x^2+8x+17}\right) -\tfrac{13}{2}\arctan(x+4) -\tfrac{13}{2}\left(\frac{x+4}{x^2+8x+17}\right) +C \\ &= -\frac{1}{2}\left[\frac{3}{x^2+8x+17} +13\arctan(x+4) +\frac{13x+52}{x^2+8x+17} \right] +C \\ &= -\frac{1}{2}\left[\frac{13x+55}{x^2+8x+17} + 13\arctan(x+4)\right]+C\end{aligned}\]


Putting it all together, we see that

\[\begin{aligned} \int\frac{x^3+8x^2+26x-3}{(x^2+8x+17)^2}\,dx &= \int\frac{x+4}{(x+4)^2+1}\,dx - \int\frac{4}{(x+4)^2+1}\,dx +3\int\frac{3x-1}{((x+4)^2+1)^2}\,dx \\ &= \left(\tfrac{1}{2}\ln(x^2+8x+17)\right) - \left(4\arctan(x+4)\right) + 3\left(-\frac{1}{2}\left[\frac{13x+55}{x^2+8x+17} + 13\arctan(x+4)\right]\right) + C \\ &= \frac{1}{2}\left[\ln(x^2+8x+17) - 8\arctan(x+4) -\frac{3(13x+55)}{x^2+8x+17} - 39\arctan(x+4)\right] + C\\ &= \boxed{\dfrac{1}{2} \left[\ln(x^2+8x+17) - 47\arctan(x+4) - \dfrac{3(13x+55)}{x^2+8x+17} \right] + C}\end{aligned}\]

I hope everything makes sense!
 
Last edited:
Insights auto threads is broken atm, so I'm manually creating these for new Insight articles. In Dirac’s Principles of Quantum Mechanics published in 1930 he introduced a “convenient notation” he referred to as a “delta function” which he treated as a continuum analog to the discrete Kronecker delta. The Kronecker delta is simply the indexed components of the identity operator in matrix algebra Source: https://www.physicsforums.com/insights/what-exactly-is-diracs-delta-function/ by...
Fermat's Last Theorem has long been one of the most famous mathematical problems, and is now one of the most famous theorems. It simply states that the equation $$ a^n+b^n=c^n $$ has no solutions with positive integers if ##n>2.## It was named after Pierre de Fermat (1607-1665). The problem itself stems from the book Arithmetica by Diophantus of Alexandria. It gained popularity because Fermat noted in his copy "Cubum autem in duos cubos, aut quadratoquadratum in duos quadratoquadratos, et...
I'm interested to know whether the equation $$1 = 2 - \frac{1}{2 - \frac{1}{2 - \cdots}}$$ is true or not. It can be shown easily that if the continued fraction converges, it cannot converge to anything else than 1. It seems that if the continued fraction converges, the convergence is very slow. The apparent slowness of the convergence makes it difficult to estimate the presence of true convergence numerically. At the moment I don't know whether this converges or not.
Back
Top