- 22,169
- 3,327
Here's the proof that the set of continuity points is ##G_\delta## (meaning a countable intersection of open sets), which is of course equivalent that the set of continuity points is ##F_\sigma## by complementation.
So let ##f:\mathbb{R}\rightarrow \mathbb{R}## be any function. For ##n\in \mathbb{N}##, we let
A_n = \left\{x\in \mathbb{R}~\vert~\exists r_{n,x} >0:~\forall x', x''\in B(x, r_{n,x}):~|f(x'') - f(x')| < 1/n\right\}
where ##B(x,r) = \{a\in \mathbb{R}~\vert~|x-a|<r\}##.
1) First we show that each ##A_n## is open.
If ##x\in A_n##, then ##B(x, r_{n,x})\subseteq A_n##. And thus ##A_n = \bigcup_{x\in A_n} B(x,r_{n,x})## is the union of open sets and thus open.
2) We show that if ##f## is continuous at ##x##, then ##x\in A_n## for each ##n##
Indeed, if ##f## is continuous at ##x##, then there is some ##r_{n,x}>0## such that for all ##x' \in B(x,r_{n,x})## holds that ##|f(x) - f(x')| < \frac{1}{2n}##. And then the triangle inequality implies that for ##x',x''\in B(x,r_{n,x})## holds that
|f(x') - f(x'')| \leq |f(x') - f(x)| + |f(x) + f(x'')| < \frac{1}{2n} + \frac{1}{2n} = \frac{1}{n}
And thus ##x\in A_n##.
3) We show that if ##x\in A_n## for each ##n##, then ##f## is continuous at ##x##.
Indeed, let ##\varepsilon>0## be arbitrary and take ##n## such that ##\frac{1}{n}<\varepsilon##. Since ##x\in A_n##, it follows that there is some ##r_{n,x}>0## such that for all ##x' \in B(x,r_{n,x})## holds that ##|f(x) - f(x')| <\frac{1}{n}<\varepsilon##. So ##f## is continuous at ##x##.
So it holds that the set of continuity points of ##f## is equal to ##\bigcap_{n\in \mathbb{N}} A_n##; which is the intersection of open sets, and thus a ##G_\delta##.
So let ##f:\mathbb{R}\rightarrow \mathbb{R}## be any function. For ##n\in \mathbb{N}##, we let
A_n = \left\{x\in \mathbb{R}~\vert~\exists r_{n,x} >0:~\forall x', x''\in B(x, r_{n,x}):~|f(x'') - f(x')| < 1/n\right\}
where ##B(x,r) = \{a\in \mathbb{R}~\vert~|x-a|<r\}##.
1) First we show that each ##A_n## is open.
If ##x\in A_n##, then ##B(x, r_{n,x})\subseteq A_n##. And thus ##A_n = \bigcup_{x\in A_n} B(x,r_{n,x})## is the union of open sets and thus open.
2) We show that if ##f## is continuous at ##x##, then ##x\in A_n## for each ##n##
Indeed, if ##f## is continuous at ##x##, then there is some ##r_{n,x}>0## such that for all ##x' \in B(x,r_{n,x})## holds that ##|f(x) - f(x')| < \frac{1}{2n}##. And then the triangle inequality implies that for ##x',x''\in B(x,r_{n,x})## holds that
|f(x') - f(x'')| \leq |f(x') - f(x)| + |f(x) + f(x'')| < \frac{1}{2n} + \frac{1}{2n} = \frac{1}{n}
And thus ##x\in A_n##.
3) We show that if ##x\in A_n## for each ##n##, then ##f## is continuous at ##x##.
Indeed, let ##\varepsilon>0## be arbitrary and take ##n## such that ##\frac{1}{n}<\varepsilon##. Since ##x\in A_n##, it follows that there is some ##r_{n,x}>0## such that for all ##x' \in B(x,r_{n,x})## holds that ##|f(x) - f(x')| <\frac{1}{n}<\varepsilon##. So ##f## is continuous at ##x##.
So it holds that the set of continuity points of ##f## is equal to ##\bigcap_{n\in \mathbb{N}} A_n##; which is the intersection of open sets, and thus a ##G_\delta##.